
- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
C++ Program to Implement Fusion Tree
A fusion tree is a tree data structure that implements an associative array on w-bit integers. This is a C++ Program to Implement Fusion Tree Which generated an array of 6-bit integers on given binary tree as input.
Algorithm
Required functions and inputs −
Begin Take the no of elements of the tree and take the elements. Create a structure FusionTree to declare variables. Create a function init() for creating the nodes. Create a function traverse() to traverse the tree. Create a function sort() to sort the nodes of the tree. Create a function split_child() to split the nodes. Create a function insert() to insert the nodes into the tree. Create a function main(), to call insert() to create the fusion tree and then call the function traverse to display the result. End
Example Code
#include<iostream> using namespace std; struct FusionTree//declaration of nodes { int *d; FusionTree **child_ptr; bool l; int n; }*r = NULL, *np = NULL, *x = NULL; FusionTree* init()//cretae new node { int i; np = new FusionTree; np->d = new int[6]; np->child_ptr = new FusionTree *[7]; np->l = true; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(FusionTree *p)//traverse the tree { cout<<endl; int i; for (i = 0; i < p->n; i++) { if (p->l == false) { traverse(p->child_ptr[i]); } cout << " " << p->d[i]; } if (p->l == false) { traverse(p->child_ptr[i]); } cout<<endl; } void sort(int *p, int n)//sort the tree { int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] >p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(FusionTree *x, int i)//split the child { int j, mid; FusionTree *np1, *np3, *y; np3 = init();// initialize new node np3->l = true; if (i == -1) { mid = x->d[2];//calculate mid x->d[2] = 0; x->n--; np1 = init(); np1->l = false; x->l = true; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j <6 ; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l== true && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == false) { for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if ((x->child_ptr[i])->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; cout<<"enter the no of elements to be inserted\n"; cin>>n; for(i = 0; i < n; i++) { cout<<"enter the element\n"; cin>>t; insert(t); } cout<<"traversal of constructed fusion tree\n"; traverse(r); }
Output
enter the no of elements to be inserted 7 enter the element 10 enter the element 20 enter the element 30 enter the element 40 enter the element 50 enter the element 60 enter the element 70 traversal of constructed fusion tree 10 20 30 40 50 60 70
- Related Articles
- C++ Program to Implement AVL Tree
- C++ Program to Implement B+ Tree
- C++ Program to Implement Cartesian Tree
- C++ Program to Implement Interval Tree
- C++ Program to Implement Splay Tree
- C++ Program to Implement Ternary Tree
- C++ program to Implement Threaded Binary Tree
- C++ Program to Implement B Tree\n
- C++ Program to Implement Expression Tree Algorithm
- C++ Program to Implement Randomized Binary Search Tree
- C++ Program to Implement self Balancing Binary Search Tree
- Python Program to Implement Binomial Tree
- C++ Program to Implement a Binary Search Tree using Linked Lists
- C++ Program to Implement Double Order Traversal of a Binary Tree
- Golang program to implement binary tree data structure

Advertisements