- Convex Optimization Tutorial
- Home
- Introduction
- Linear Programming
- Norm
- Inner Product
- Minima and Maxima
- Convex Set
- Affine Set
- Convex Hull
- Caratheodory Theorem
- Weierstrass Theorem
- Closest Point Theorem
- Fundamental Separation Theorem
- Convex Cones
- Polar Cone
- Conic Combination
- Polyhedral Set
- Extreme point of a convex set
- Direction
- Convex & Concave Function
- Jensen's Inequality
- Differentiable Convex Function
- Sufficient & Necessary Conditions for Global Optima
- Quasiconvex & Quasiconcave functions
- Differentiable Quasiconvex Function
- Strictly Quasiconvex Function
- Strongly Quasiconvex Function
- Pseudoconvex Function
- Convex Programming Problem
- Fritz-John Conditions
- Karush-Kuhn-Tucker Optimality Necessary Conditions
- Algorithms for Convex Problems

- Convex Optimization Resources
- Convex Optimization - Quick Guide
- Convex Optimization - Resources
- Convex Optimization - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Convex Optimization - Direction

Let S be a closed convex set in $\mathbb{R}^n$. A non zero vector $d \in \mathbb{R}^n$ is called a direction of S if for each $x \in S,x+\lambda d \in S, \forall \lambda \geq 0.$

Two directions $d_1$ and $d_2$ of S are called distinct if $d \neq \alpha d_2$ for $ \alpha>0$.

A direction $d$ of $S$ is said to be extreme direction if it cannot be written as a positive linear combination of two distinct directions, i.e., if $d=\lambda _1d_1+\lambda _2d_2$ for $\lambda _1, \lambda _2>0$, then $d_1= \alpha d_2$ for some $\alpha$.

Any other direction can be expressed as a positive combination of extreme directions.

For a convex set $S$, the direction d such that $x+\lambda d \in S$ for some $x \in S$ and all $\lambda \geq0$ is called

**recessive**for $S$.Let E be the set of the points where a certain function $f:S \rightarrow$ over a non-empty convex set S in $\mathbb{R}^n$ attains its maximum, then $E$ is called exposed face of $S$. The directions of exposed faces are called exposed directions.

A ray whose direction is an extreme direction is called an extreme ray.

## Example

Consider the function $f\left ( x \right )=y=\left |x \right |$, where $x \in \mathbb{R}^n$. Let d be unit vector in $\mathbb{R}^n$

Then, d is the direction for the function f because for any $\lambda \geq 0, x+\lambda d \in f\left ( x \right )$.