- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Conductor Material Required in Overhead DC Transmission System
Overhead DC Transmission System
The overhead transmission system is the one in which the conductors are hanged with the help of pole supports. When the transmission lines carry direct current, then the system is called the DC transmission system.
There are three types of overhead DC transmission systems viz. −
- Two wire DC system with one conductor earthed
- Two wire DC system with mid-point earthed
- Three wire DC system
Conductor Material Required in Two-Wire DC System with One Conductor Earthed
Consider a two wire DC system with one conductor earthed as shown in Figure-1. Here, one is the positive wire and the other is the negative wire and the load is connected between the two wires.
Here,
- $\mathrm{\mathit{V_{m}}}$ = Maximum voltage between conductors
- π = Power to be transmitted
Therefore, the load current is given by,
$$\mathrm{\mathit{I_{L\mathrm{1}}\mathrm{\, =\, }\frac{P}{V_{m}}}}$$
Let, π 1 is the resistance of each line conductor, then,
$$\mathrm{\mathit{R_{\mathrm{1}}\mathrm{\, =\, }\frac{\rho l}{a_{\mathrm{1}}}}}$$
Where, π1 is the cross-sectional area of the conductor.
Hence, the total power loss in the line is given by,
$$\mathrm{\mathit{W\mathrm{\, =\, }\mathrm{2}\,I_{L\mathrm{1}}^{\mathrm{2}}\,R_{\mathrm{1}}\mathrm{\, =\, }\mathrm{2}\times \left ( \frac{P}{V_{m}} \right )^{\mathrm{2}}\times \frac{\rho l}{a_{\mathrm{1}}}\mathrm{\, =\, }\frac{\mathrm{2}P^{\mathrm{2}}\rho l}{V_{m}a_{\mathrm{1}}}}}$$
⇒ Cross sectional area,
$$\mathrm{\mathit{a_{\mathrm{1}}\mathrm{\, =\, }\frac{\mathrm{2}P^{\mathrm{2}}\rho l}{WV_{m}}}}$$
Therefore, the volume of conductor material required in two wire DC system (say K) is given by,
$$\mathrm{\mathit{K\mathrm{\, =\, }\mathrm{2}\times a_{\mathrm{1}}\times l\mathrm{\, =\, }\mathrm{2}\times \left ( \frac{\mathrm{2}P^{\mathrm{2}}\rho l}{WV_{m}} \right )\times l}}$$
$$\mathrm{\mathit{\therefore K\mathrm{\, =\, }\frac{\mathrm{4}P^{\mathrm{2}}\rho l^{\mathrm{2}}}{WV_{m}} }\; \; \; ...\left ( 1 \right )}$$
Conductor Material Required in Two-Wire DC System with Mid-Point Earthed
Consider a two wire DC system with mid-point earthed as shown in Figure-2.
In this system, the maximum voltage between any conductor and the earth is ππ, therefore the maximum voltage between two conductors is 2ππ. Therefore, the load current is given by,
$$\mathrm{\mathit{I_{L\mathrm{2}}\mathrm{\, =\, }\frac{P}{\mathrm{2}V_{m}}}}$$
Let a2 is the area of cross section of the conductor and R2 be the resistance of each line conductor, then
$$\mathrm{\mathit{R_{\mathrm{2}}\mathrm{\, =\, }\frac{\rho l}{a_{\mathrm{2}}}}}$$
Therefore, the total lines losses are given by,
$$\mathrm{\mathit{W\mathrm{\, =\, }\mathrm{2}\,I_{L\mathrm{2}}^{\mathrm{2}}\,R_{\mathrm{2}}\mathrm{\, =\, }\mathrm{2}\times \left ( \frac{P}{\mathrm{2}V_{m}} \right )^{\mathrm{2}}\times \frac{\rho l}{a_{\mathrm{2}}}\mathrm{\, =\, }\frac{P^{\mathrm{2}}\rho l}{\mathrm{2}V_{m}^{\mathrm{2}}a_{\mathrm{2}}}}}$$
⇒ Area of cross section,
$$\mathrm{\mathit{a_{\mathrm{2}}\mathrm{\, =\, }\frac{P^{\mathrm{2}}\rho l}{\mathrm{2}V_{m}^{\mathrm{2}}W}}}$$
Hence, the volume of conductor material required in the two wire DC system with mid-point earthed (let πΎ1) is given by,
$$\mathrm{\mathit{K_{\mathrm{1}}\mathrm{\, =\, }\mathrm{2}\times a_{\mathrm{2}}\times l\mathrm{\, =\, }\frac{P^{\mathrm{2}}\rho l^{\mathrm{2}}}{V_{m}^{\mathrm{2}}W}\; \; \: \cdot \cdot \cdot \left ( \mathrm{2} \right )}}$$
Now, comparing equation (1) & (2), we get,
$$\mathrm{\mathit{\frac{K_{\mathrm{1}}}{K}\mathrm{\, =\, }\frac{\left ( \mathrm{\mathit{\frac{P^{\mathrm{2}}\rho l^{\mathrm{2}}}{V_{m}^{\mathrm{2}}W}}} \right )}{\left ( \mathrm{\mathit{\frac{\mathrm{4}P^{\mathrm{2}}\rho l^{\mathrm{2}}}{WV_{m}}}} \right )}\mathrm{\, =\, }\frac{\mathrm{1}}{\mathrm{4}}}} $$
$$\mathrm{\mathit{\therefore K_{\mathrm{1}}\mathrm{\, =\, }\frac{K}{\mathrm{4}} }\; \; \; \cdot \cdot \cdot \left ( 3 \right )}$$
Thus, the volume of conductor material required in a two-wire DC system with mid-point earthed is one-fourth of that required in a two-wire DC system with one conductor earthed.
Conductor Material Required in Three-Wire DC System
Consider a three-wire DC system in which two outers and a neutral wire be earthed at the generator end as shown in Figure-3.
If a balanced load is connected to the system, no current will flow in the neutral wire. Then, for the balanced load, the load current is given by,
$$\mathrm{\mathit{I_{L\mathrm{3}}\mathrm{\, =\, }\frac{P}{\mathrm{2}V_{m}}}}$$
If a3 is the area of cross section of each outer wire, then the resistance R3 of each outer line conductor is given by,
$$\mathrm{\mathit{R_{\mathrm{3}}\mathrm{\, =\, }\frac{\rho l}{a_{\mathrm{3}}}}}$$
Thus, the total line losses are given by,
$$\mathrm{\mathit{W\mathrm{\, =\, }\mathrm{2}\,I_{\mathrm{3}}^{\mathrm{2}}\,R_{\mathrm{3}}\mathrm{\, =\, }\mathrm{2}\times \left ( \frac{P}{\mathrm{2}V_{m}} \right )^{\mathrm{2}}\times \frac{\rho l}{a_{\mathrm{3}}}\mathrm{\, =\, }\frac{P^{\mathrm{2}}\rho l}{\mathrm{2}V_{m}^{\mathrm{2}}a_{\mathrm{3}}}}}$$
⇒ Area of cross section, $\mathrm{\mathit{a_{\mathrm{3}}\mathrm{\, =\, }\frac{P^{\mathrm{2}}\rho l}{\mathrm{2}V_{m}^{\mathrm{2}}W}}}$
Also, assuming the area of cross-section of the neutral wire to be half that of the outer line wires. Then, the volume of the conductor material required in the three-wire DC system (say K3) is given by,
$$\mathrm{\mathit{K_{\mathrm{3}}\mathrm{\, =\, }\mathrm{2.5}\times a_{\mathrm{3}}\times l\mathrm{\, =\, }\mathrm{2.5}\times \left ( \frac{P^{\mathrm{2}}\rho l}{\mathrm{2}V_{m}^{\mathrm{2}}W } \right )\times l}}$$
$$\mathrm{\mathit{\therefore K_{\mathrm{3}}\mathrm{\, =\, }\frac{\mathrm{1.25}P^{\mathrm{2}}\rho l^{\mathrm{2}}}{V_{m}^{\mathrm{2}}W }\; \; \; \cdot \cdot \cdot \left ( \mathrm{4} \right ) }}$$
Comparing equations (1) & (4), we get,
$$\mathrm{\mathit{ \frac{K_{\mathrm{3}}}{K}\mathrm{\, =\, }\frac{\left ( \frac{\mathrm{1.25}P^{\mathrm{2}}\rho l^{\mathrm{2}}}{V_{m}^{\mathrm{2}}W } \right )}{\left ( \mathrm{\mathit{\frac{\mathrm{4}P^{\mathrm{2}}\rho l^{\mathrm{2}}}{WV_{m}}}} \right )}}\mathrm{\, =\, }\frac{5}{16}}$$
$$\mathrm{\mathit{\therefore K_{\mathrm{3}}\mathrm{\, =\, }}\frac{5}{16}\times \mathit{K}\; \; \; \cdot \cdot \cdot \left ( 5 \right )}$$
Hence, from the equation (5) it is clear that the volume of conductor material required in the three-wire DC system is (5/16)th of that required in a two-wire DC system with one conductor earthed.
- Related Articles
- Conductor Material Required in Overhead Two-Phase AC Transmission System
- Conductor Material Required in Single-Phase Overhead AC Transmission System
- Conductor Material Required in Three-Phase Overhead AC Transmission System
- What is the Volume of Conductor Material Required in Underground DC System?
- Volume of Conductor Material Required in Underground Single-Phase AC System
- Volume of Conductor Material Required in Underground Three-Phase AC System
- Volume of Conductor Material Required in Underground Two-Phase AC System
- Comparison of Conductor Material in Underground Electric System
- Insulators Used in Overhead Transmission Lines
- What is the Corona Effect in Overhead Transmission Lines?
- Difference between AC and DC Transmission Systems
- Distortionless Transmission through a System
- What are the advantages and disadvantages of DC and AC Transmission?
- Economic Choice of Conductor Size β Kelvinβs Law (Economics of Power Transmission)
- What are Transmission Bandwidth and System Temperature?
