# Concatenate a sequence of masked arrays along axis 0 in Numpy

To concatenate a sequence of masked arrays, use the ma.concatenate() method in Python Numpy. The axis is set using the "axis" parameter. Here, we have set axis 0.

The parameters are the arrays that must have the same shape, except in the dimension corresponding to axis (the first, by default). The axis is the axis along which the arrays will be joined. Default is 0. The function returns the concatenated array with any masked entries preserved.

A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.

## Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Create Array 1, a 3x3 array with int elements using the numpy.arange() method −

arr1 = np.arange(9).reshape((3,3))
print("Array1...", arr1)
print("Array type...", arr1.dtype)

Create a masked array 1 −

arr1 = ma.array(arr1)


arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked

print("Masked Array1...",arr1)


Create Array 2, another 3x3 array with int elements using the numpy.arange() method"

arr2 = np.arange(9).reshape((3,3))
print("Array2...", arr2)
print("Array type...", arr2.dtype)

Create a masked array 2 −

arr2 = ma.array(arr2)


arr2[2, 1] = ma.masked
arr2[2, 2] = ma.masked

print("Masked Array2...",arr2)


To concatenate a sequence of masked arrays, use the ma.concatenate() method in Python Numpy. The axis is set using the "axis" parameter. Here, we have set axis 0 −

print("Result of concatenation...",ma.concatenate([arr1, arr2], axis = 0))

## Example

# Python ma.MaskedArray - Concatenate a sequence of masked arrays along axis 0

import numpy as np
import numpy.ma as ma

# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...", arr1)
print("Array type...", arr1.dtype)

# Get the dimensions of the Array
print("Array Dimensions...",arr1.ndim)

# Get the shape of the Array
print("Our Array Shape...",arr1.shape)

# Get the number of elements of the Array
print("Elements in the Array...",arr1.size)

arr1 = ma.array(arr1)

# Array 2
# Creating another 3x3 array with int elements using the numpy.arange() method
arr2 = np.arange(9).reshape((3,3))
print("Array2...", arr2)
print("Array type...", arr2.dtype)

# Get the dimensions of the Array
print("Array Dimensions...",arr2.ndim)

# Get the shape of the Array
print("Our Array Shape...",arr2.shape)

# Get the number of elements of the Array
print("Elements in the Array...",arr2.size)

arr2 = ma.array(arr2)

# To concatenate a sequence of arrays, use the ma.concatenate() method in Python Numpy
print("Result of concatenation...",ma.concatenate([arr1, arr2], axis = 0))

## Output

Array1...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

[[0 -- 2]
[3 -- 5]
[6 7 8]]

Array2...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

[[0 1 2]
[3 4 5]
[6 -- --]]

Result of concatenation...
[[0 -- 2]
[3 -- 5]
[6 7 8]
[0 1 2]
[3 4 5]
[6 -- --]]

Updated on: 03-Feb-2022

59 Views 