- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Append masked arrays along axis 1 in Numpy
To append masked arrays along axis 1, use the ma.append() method in Python Numpy. The axis is set using the "axis" parameter. The values are appended to a copy of the first parameter array. These values are appended to a copy of first parameter array. It must be of the correct shape. If axis is not specified, the second parameter array can be any shape and will be flattened before use. The function returns a copy of array1 with array2 appended to axis. The append does not occur in-place: a new array is allocated and filled. If axis is None, the result is a flattened array.
The axis is an axis along which v are appended. If axis is not given, both a and b are flattened before use.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create Array 1, a 3x3 array with int elements using the numpy.arange() method −
arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype)
Create a masked array1 −
arr1 = ma.array(arr1)
Mask Array1 −
maskArr1 = ma.masked_values(arr1, 5)
Display Masked Array 1 −
print("
Masked Array1...
",maskArr1)
Create Array 2, another 3x3 array with int elements using the numpy.arange() method −
arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)
Create masked array2 −
arr2 = ma.array(arr2)
Mask Array2 −
maskArr2 = ma.masked_values(arr2, 7)
Display Masked Array 2 −
print("
Masked Array2...
",maskArr2)
To append masked arrays along specific axis, use the ma.append() method. The axis is set using the "axis" parameter −
print("
Result of append...
",ma.append(maskArr1, maskArr2, axis = 1))
Example
import numpy as np import numpy.ma as ma # Array 1 # Creating a 3x3 array with int elements using the numpy.arange() method arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 maskArr1 = ma.masked_values(arr1, 5) # Display Masked Array 1 print("
Masked Array1...
",maskArr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 maskArr2 = ma.masked_values(arr2, 7) # Display Masked Array 2 print("
Masked Array2...
",maskArr2) # To append masked arrays along specific axis, use the ma.append() method in Python Numpy # The axis is set using the "axis" parameter print("
Result of append...
",ma.append(maskArr1, maskArr2, axis = 1))
Output
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 1 2] [3 4 --] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [6 -- 8]] Result of append... [[0 1 2 0 1 2] [3 4 -- 3 4 5] [6 7 8 6 -- 8]]