# Compute the inverse Hyperbolic tangent of array elements in Python

The arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x. The convention is to return the z whose imaginary part lies in [-pi/2, pi/2]. The inverse hyperbolic tangent is also known as atanh or tanh^-1.

To compute the inverse Hyperbolic tangent of array elements, use the numpy.arctanh() method in Python Numpy. The method returns the array of the same shape as x. This is a scalar if x is a scalar. The 1st parameter, x is input array. The 2nd and 3rd parameters are optional.

The 2nd parameter is an ndarray, A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned.

The 3rd parameter is the condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value.

## Steps

At first, import the required library −

import numpy as np

Create an array using the array() method in Numpy −

arr = np.array((0, 0.2, 0.3, 0.5, 0.11))

Displaying our array −

print("Array...\n",arr)

Get the datatype −

print("\nArray datatype...\n",arr.dtype)


Get the dimensions of the Array −

print("\nArray Dimensions...\n",arr.ndim)

Get the number of elements of the Array −

print("\nNumber of elements in the Array...\n",arr.size)

To find the inverse hyperbolic tangent of the array elements, use the numpy.arctanh() method in Python Numpy −

print("\nResult...",np.arctanh(arr))

## Example

import numpy as np

# To compute the inverse Hyperbolic tangent of array elements, use the numpy.arctanh() method in Python Numpy
# The method returns the array of the same shape as x. This is a scalar if x is a scalar.
# The 1st parameter, x is input array

print("Get the Trigonometric inverse Hyperbolic tangent of array elements...")

# Create an array using the array() method in Numpy
arr = np.array((0, 0.2, 0.3, 0.5, 0.11))

# Display the array
print("\nArray...\n", arr)

# Get the type of the array
print("\nOur Array type...\n", arr.dtype)

# Get the dimensions of the Array
print("\nOur Array Dimensions...\n",arr.ndim)

# Get the number of elements in the Array
print("\nNumber of elements...\n", arr.size)

# To find the inverse hyperbolic tangent of the array elements, use the numpy.arctanh() method in Python Numpy
print("\nResult...",np.arctanh(arr))

## Output

Get the Trigonometric inverse Hyperbolic tangent of array elements...

Array...
[0. 0.2 0.3 0.5 0.11]

Our Array type...
float64

Our Array Dimensions...
1

Number of elements...
5

Result... [0. 0.20273255 0.3095196 0.54930614 0.11044692]