- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compute the determinant for a stack of matrices in linear algebra in Python
To compute the determinant for a stack of matrices in linear algebra, use the np.linalg.det() in Python Numpy. The 1st parameter, a is the input array to compute determinants for. The method returns the determinant of a.
Steps
At first, import the required libraries -
import numpy as np
Create an array −
arr = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
Display the array −
print("Our Array...\n",arr)
Check the Dimensions −
print("\nDimensions of our Array...\n",arr.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",arr.dtype)
Get the Shape −
print("\nShape of our Array object...\n",arr.shape)
To compute the determinant for a stack of matrices in linear algebra, use the np.linalg.det() in Python −
print("\nResult (determinant)...\n",np.linalg.det(arr))
Example
import numpy as np # Create an array arr = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]) # Display the array print("Our Array...\n",arr) # Check the Dimensions print("\nDimensions of our Array...\n",arr.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",arr.dtype) # Get the Shape print("\nShape of our Array object...\n",arr.shape) # To compute the determinant for a stack of matrices in linear algebra, use the np.linalg.det() in Python Numpy. print("\nResult (determinant)...\n",np.linalg.det(arr))
Output
Our Array... [[[1 2] [3 4]] [[1 2] [2 1]] [[1 3] [3 1]]] Dimensions of our Array... 3 Datatype of our Array object... int64 Shape of our Array object... (3, 2, 2) Result (determinant)... [-2. -3. -8.]
Advertisements