- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Choose the correct answer from the given four options:
Which term of the AP: $ 21,42,63,84, \ldots $ is 210 ?
(A) $ 9^{\mathrm{th}} $
(B) $ 10^{\text {th }} $
(C) $ 11^{\text {th }} $
(D) $ 12^{\text {th }} $
Given:
Given A.P. is \( 21,42,63,84, \ldots \)
To do:
We have to find $210$ is which term of the given A.P.
Solution:
Let $210$ be the $n$th term of the given A.P.
Here,
$a_1=21, a_2=42, a_3=63$
Common difference $d=a_2-a_1=42-21=21$
We know that,
nth term $a_n=a+(n-1)d$
Therefore,
$a_{n}=21+(n-1)(21)$
$210=21+n(21)-1(21)$
$210-21=21n-21$
$210=21n$
$n=\frac{210}{21}$
$n=10$
Hence, $210$ is the 10th term of the given A.P.
- Related Articles
- Choose the correct answer from the given four options:If 7 times the \( 7^{\text {th }} \) term of an AP is equal to 11 times its \( 11^{\text {th }} \) term, then its 18 th term will be(A) 7(B) 11(C) 18(D) 0
- Find the \( 20^{\text {th }} \) term of the AP whose \( 7^{\text {th }} \) term is 24 less than the \( 11^{\text {th }} \) term, first term being 12.
- If the \( 9^{\text {th }} \) term of an AP is zero, prove that its \( 29^{\text {th }} \) term is twice its \( 19^{\text {th }} \) term.
- Choose the correct answer from the given four options:If the \( 2^{\text {nd }} \) term of an AP is 13 and the \( 5^{\text {th }} \) term is 25 , what is its \( 7^{\text {th }} \) term?(A) 30(B) 33(C) 37(D) 38
- The sum of the \( 5^{\text {th }} \) and the \( 7^{\text {th }} \) terms of an AP is 52 and the \( 10^{\text {th }} \) term is 46 . Find the AP.
- Choose the correct answer from the given four options:The \( 4^{\text {th }} \) term from the end of the AP: \( -11,-8,-5, \ldots, 49 \) is(A) 37(B) 40(C) 43(D) 58
- The ratio of the \( 11^{\text {th }} \) term to the \( 18^{\text {th }} \) term of an AP is \( 2: 3 \). Find the ratio of the \( 5^{\text {th }} \) term to the 21 term
- If sum of the \( 3^{\text {rd }} \) and the \( 8^{\text {th }} \) terms of an AP is 7 and the sum of the \( 7^{\text {th }} \) and the \( 14^{\text {th }} \) terms is \( -3 \), find the \( 10^{\text {th }} \) term.
- Choose the correct answer from the given four options:The \( 11^{\text {th }} \) term of the AP: \( -5, \frac{-5}{2}, 0, \frac{5}{2}, \ldots \) is(A) \( -20 \)(B) 20(C) \( -30 \)(D) 30
- Find the \( 12^{\text {th }} \) term from the end of the AP: \( -2,-4,-6, \ldots,-100 \).
- The \( 26^{\text {th }}, 11^{\text {th }} \) and the last term of an AP are 0,3 and \( -\frac{1}{5} \), respectively. Find the common difference and the number of terms.
- Find the sum of first 17 terms of an AP whose \( 4^{\text {th }} \) and \( 9^{\text {th }} \) terms are \( -15 \) and \( -30 \) respectively.
- The $4^{th}$ term of an A.P. is zero. Prove that the $25^{th}$ term of the A.P. is three times its $11^{th}$ term.
- If $m$ times the $m^{th}$ term of an AP is equal to $n$ times its $n^{th}$ term. find the $( m+n)^{th}$ term of the AP.
- The $9^{th}$ term of an AP is $499$ and its $499^{th}$ term is $9$. Which of its term is equal to zero.

Advertisements