- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Check if a graph is strongly connected - Set 1 (Kosaraju using DFS) in C++
Suppose we have a graph. We have to check whether the graph is strongly connected or not using Kosaraju algorithm. A graph is said to be strongly connected, if any two vertices has path between them, then the graph is connected. An undirected graph is strongly connected graph.
Some undirected graph may be connected but not strongly connected. This is an example of strongly connected graph.
This is an example of connected, but not strongly connected graph.
Here we will see, how to check a graph is strongly connected or not using the following steps of Kosaraju algorithm.
Steps −
Mark all nodes as not visited
Start DFS traversal from any arbitrary vertex u. If the DFS fails to visit all nodes, then return false.
Reverse all edges of the graph
Set all vertices as not visited nodes again
Start DFS traversal from that vertex u. If the DFS fails to visit all nodes, then return false. otherwise true.
Example
#include <iostream> #include <list> #include <stack> using namespace std; class Graph { int V; list<int> *adj; void dfs(int v, bool visited[]); public: Graph(int V) { this->V = V; adj = new list<int>[V]; } ~Graph() { delete [] adj; } void addEdge(int v, int w); bool isStronglyConnected(); Graph reverseArc(); }; void Graph::dfs(int v, bool visited[]) { visited[v] = true; list<int>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) dfs(*i, visited); } Graph Graph::reverseArc() { Graph graph(V); for (int v = 0; v < V; v++) { list<int>::iterator i; for(i = adj[v].begin(); i != adj[v].end(); ++i) graph.adj[*i].push_back(v); } return graph; } void Graph::addEdge(int u, int v) { adj[u].push_back(v); } bool Graph::isStronglyConnected() { bool visited[V]; for (int i = 0; i < V; i++) visited[i] = false; dfs(0, visited); for (int i = 0; i < V; i++) if (visited[i] == false) return false; Graph graph = reverseArc(); for(int i = 0; i < V; i++) visited[i] = false; graph.dfs(0, visited); for (int i = 0; i < V; i++) if (visited[i] == false) return false; return true; } int main() { Graph graph(5); graph.addEdge(0, 1); graph.addEdge(1, 2); graph.addEdge(2, 3); graph.addEdge(3, 0); graph.addEdge(2, 4); graph.addEdge(4, 2); graph.isStronglyConnected()? cout << "This is strongly connected" : cout << "This is not strongly connected"; }
Output
This is strongly connected