# C / C++ Program for Dijkstra's shortest path algorithm

We are given a graph with a source vertex in the graph. And we have to find the shortest path from the source vertex to all other vertices of the graph.

The Dijikstra’s algorithm is a greedy algorithm to find the shortest path from the source vertex of the graph to the root node of the graph.

## Algorithm

Step 1 : Create a set shortPath to store vertices that come in the way of the shortest path tree.
Step 2 : Initialize all distance values as INFINITE and assign distance values as 0 for source vertex so that it is picked first.
Step 3 : Loop until all vertices of the graph are in the shortPath.
Step 3.1 : Take a new vertex that is not visited and is nearest.
Step 3.2 : Add this vertex to shortPath.
Step 3.3 : For all adjacent vertices of this vertex update distances. Now check every adjacent vertex of V, if sum of distance of u and weight of edge is elss the update it.

Based on this algorithm lets create a program.

## Example

#include <limits.h>
#include <stdio.h>
#define V 9
int minDistance(int dist[], bool sptSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
int printSolution(int dist[], int n) {
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d \t %d\n", i, dist[i]);
}
void dijkstra(int graph[V][V], int src) {
int dist[V];
bool sptSet[V];
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
dist[src] = 0;
for (int count = 0; count < V - 1; count++) {
int u = minDistance(dist, sptSet);
sptSet[u] = true;
for (int v = 0; v < V; v++)
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) dist[v] = dist[u] + graph[u][v];
}
printSolution(dist, V);
}
int main() {
int graph[V][V] = { { 0, 6, 0, 0, 0, 0, 0, 8, 0 },
{ 6, 0, 8, 0, 0, 0, 0, 13, 0 },
{ 0, 8, 0, 7, 0, 6, 0, 0, 2 },
{ 0, 0, 7, 0, 9, 14, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
{ 0, 0, 6, 14, 10, 0, 2, 0, 0 },
{ 0, 0, 0, 0, 0, 2, 0, 1, 6 },
{ 8, 13, 0, 0, 0, 0, 1, 0, 7 },
{ 0, 0, 2, 0, 0, 0, 6, 7, 0 }
};
dijkstra(graph, 0);
return 0;
}

## Output

Vertex Distance from Source
0 0
1 6
2 14
3 21
4 21
5 11
6 9
7 8
8 15