
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Ginni has Published 1522 Articles

Ginni
930 Views
An artificial neural network is a system placed on the functions of biological neural networks. It is a simulation of a biological neural system. The feature of artificial neural networks is that there are several structures, which required several approaches of algorithms, but regardless of being a complex system, a ... Read More

Ginni
852 Views
The naıve Bayesian classifier creates the assumption of class conditional independence, i.e., given the class label of a tuple, the values of the attributes are considered to be conditionally separate from one another. This defines evaluations.When the assumption affects true, hence the naïve Bayesian classifier is effective in contrast with ... Read More

Ginni
1K+ Views
Bayesian classifiers are statistical classifiers. It can predict class membership probabilities, such as the probability that a given sample applied to a definite class. Bayesian classifiers have also displayed large efficiency and speed when they can have high databases.Because classes are defined, the system must infer rules that supervise the ... Read More

Ginni
2K+ Views
The Nearest Neighbour rule produces frequently high performance, without previous assumptions about the allocation from which the training instances are drawn. It includes a training set of both positive and negative cases. A new sample is defined by computing the distance to the convenient training case; the sign of that ... Read More

Ginni
2K+ Views
It is a widely used rule induction algorithm called RIPPER. This algorithm scales almost linearly with the several training instances and is especially suited for constructing models from data sets with overloaded class distributions. RIPPER also works well with noisy data sets because it uses a validation set to prevent ... Read More

Ginni
4K+ Views
There are several methods for estimating the generalization error of a model during training. The estimated error supports the learning algorithm to do model choice; i.e., to discover a model of the right complexity that is not affected by overfitting.Because the model has been constructed, it can be used in ... Read More

Ginni
2K+ Views
There are various characteristics of decision tree induction is as follows −Decision tree induction is a nonparametric method for constructing classification models. In other terms, it does not need some previous assumptions regarding the type of probability distributions satisfied by the class and the different attributes.It can be finding an ... Read More

Ginni
4K+ Views
Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision tree is a sequential diagram-like tree structure, where every internal node (non-leaf node) indicates a test on an attribute, each branch defines a result of the test, and each leaf node (or terminal node) influences ... Read More

Ginni
5K+ Views
A variable transformation defines a transformation that is used to some values of a variable. In other terms, for every object, the revolution is used to the value of the variable for that object. For instance, if only the significance of a variable is essential, then the values of the ... Read More

Ginni
1K+ Views
Data mining is the process of finding useful new correlations, patterns, and trends by transferring through a high amount of data saved in repositories, using pattern recognition technologies including statistical and mathematical techniques. It is the analysis of factual datasets to discover unsuspected relationships and to summarize the records in ... Read More