
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Gaurav Kumar has Published 49 Articles

Gaurav Kumar
156 Views
To implement Scientific or Mathematical calculation, we need various universal constants. For example, the formula to calculate area of a circle is pi*r*r where Pi is a constant having value = 3.141592653. There are various other scenarios like this where we need constants. It would really be helpful if we ... Read More

Gaurav Kumar
499 Views
The scipy.cluster.vq()has two methods to implement k-means clustering namely kmeans() and kmeans2(). There is a significant difference in the working of both these methods. Let us understand it −scipy.cluster.vq.kmeans(obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True)− The kmeans() method forms k clusters by performing k-means algorithm on a set of observation vectors. To ... Read More

Gaurav Kumar
229 Views
scipy.cluster.vq.kmeans2(data, k, iter=10, thresh=1e-05, minit='random', missing='warn', check_finite=True)− The kmeans2() method classify a set of observations vectors into k clusters by performing k-means algorithm. To check for convergence, the kmeans2() method does not use threshold values. It has additional parameters to decide the method of initialization of centroids, to handle empty ... Read More

Gaurav Kumar
211 Views
The scipy.cluster.vq.kmeans(obs, k_or_guess, iter=20, thresh=1e- 05, check_finite=True)method forms k clusters by performing a k-means algorithm on a set of observation vectors. To determine the stability of the centroids, this method uses a threshold value to compare the change in average Euclidean distance between the observations and their corresponding centroids. The ... Read More

Gaurav Kumar
194 Views
Before implementing k-means algorithms, the scipy.cluster.vq.vq(obs, code_book, check_finite = True) used to assign codes to each observation from a code book. It first compares each observation vector in the ‘M’ by ‘N’ obs array with the centroids in the code book. Once compared, it assigns the code to the closest ... Read More

Gaurav Kumar
149 Views
Before implementing k-means algorithms, it is always beneficial to rescale each feature dimension of the observation set. The function scipy.cluster.vq.whiten(obs, check_finite = True)is used for this purpose. To give it unit variance, it divides each feature dimension of the observation by its standard deviation (SD).ParametersBelow are given the parameters of ... Read More

Gaurav Kumar
217 Views
If you are unsure of how to use a particular function or variable in NumPy and SciPy, you can call for the documentation with the help of ‘?’. In Jupyter notebook and IPython shell we can call up the documentation as follows −ExampleIf you want to know NumPy sin () ... Read More

Gaurav Kumar
187 Views
Clustering is one among the most useful unsupervised ML methods. It is used to find the relationship patterns and similarity among the input data samples. After finding these patterns, unsupervised algorithm clusters the data samples having similarities into groups as illustrated in the diagram below −Anomaly detection, image segmentation, medical ... Read More

Gaurav Kumar
293 Views
When SciPy is imported, you do not need to explicitly import the NumPy functions because by default all the NumPy functions are available through SciPy namespace. But as SciPy is built upon the NumPy arrays, we must need to know the basics of NumPy.As most parts of linear algebra deals ... Read More