
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 26504 Articles for Server Side Programming

278 Views
To return the outer product of two 3D masked arrays, use the ma.outer() method in Python Numpy. The first parameter is the input vector. Input is flattened if not already 1-dimensional. The second parameter is the second input vector. Input is flattened if not already 1-dimensional.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import ... Read More

596 Views
To compare and return True if an array is greater than another array, use the numpy.char.greater() method in Python Numpy.NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.StepsAt first, import the required library −import numpy as npCreate two One-Dimensional arrays of string −arr1 = np.array(['Bella', 'Tom', 'John', 'Kate', 'Amy', 'Brad', 'aaa']) arr2 = np.array(['Cio', 'Tom', 'Cena', 'Kate', 'Adams', 'brad', 'aa'])Display the arrays −print("Array 1...", arr1) print("Array 2...", arr2)Get the type of the arrays −print("Our ... Read More

133 Views
To compute the bit-wise OR of two 1D arrays element-wise, use the numpy.bitwise_or() method in Python Numpy. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.The 1st and 2nd parameter are the arrays, only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape.The where parameter is the condition broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original ... Read More

229 Views
To return the underlying data, as a view of the masked array, use the ma.MaskedArray.data in Python Numpy.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreating a 4x4 array with int elements using the numpy.arange() method −arr = np.arange(16).reshape((4, 4)) print("Array...", arr) print("Array type...", arr.dtype)Get the dimensions ... Read More

1K+ Views
To return the mask of a masked array, use the ma.getmask() method in Python Numpy. Returns the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask. To guarantee a full array of booleans of the same shape as a, use getmaskarray.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.StepsAt ... Read More

158 Views
To count the number of masked elements along axis 1, use the ma.MaskedArray.count_masked() method. The axis is set using the "axis" parameter. The method returns the total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis.The axis parameter is the axis along which to count. If None (default), a flattened version of the array is used.StepsAt first, import the required library −import numpy as np import numpy.ma as maCreating a 4x4 array with int elements using the numpy.arange() method −arr = np.arange(16).reshape((4, 4)) print("Array...", arr) print("Array type...", arr.dtype)Get the dimensions of ... Read More

176 Views
To compute the bit-wise OR of two arrays element-wise, use the numpy.bitwise_or() method in Python Numpy. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.The 1st and 2nd parameter are the arrays, only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape.The where parameter is the condition broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. ... Read More

402 Views
To return the mask of a masked array, or full boolean array of False, use the ma.getmaskarray() method in Python Numpy. Returns the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full boolean array of False of the same shape as arr.A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid ... Read More

1K+ Views
The reflect package in Go provides a very important function called DeepEqual() which can be used to compare composite types. The DeepEqual() function is used when we want to check if two data types are "deeply equal".Comparing slicesExample 1Consider the code shown belowpackage main import ( "fmt" "reflect" ) func main() { sl := []int{1, 2, 3} sl1 := []int{1, 2, 3} fmt.Println(reflect.DeepEqual(sl, sl1)) }OutputIf we run the command go run main.go on the above code, then we will get the following output in the terminal.trueComparing mapsExample 2Consider the code shown below.package main import ( ... Read More

873 Views
We know that substrings are a contiguous sequence of characters in a string, and in order to check whether a string contains a substring, we have two options available.The first approach is to use a built-in function called Contains() and the second approach is to make use a self-written logic for the same.The syntax for the Contains() function of the strings package is shown below.func Contains(s, substr string) boolIn the above syntax, there are two parameters inside the function Contains(). The first parameter is the string in which we are trying to find the pattern, and the second is the ... Read More