Found 26504 Articles for Server Side Programming

Use a list of values to select rows from a Pandas DataFrame

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:36:20

2K+ Views

To select the rows from a Pandas DataFrame based on input values, we can use the isin() method.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Create a list of values for selection of rows.Print the selected rows with the given values.Next, print the rows that were not selected.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame:", df values = [1, 2] print "Selected Rows:", ... Read More

Create a Pandas Dataframe by appending one row at a time

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:34:34

4K+ Views

To create a Pandas DataFrame by appending one row at a time, we can iterate in a range and add multiple columns data in it.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Iterate in a range of 10.Assign values at different index with numbers.Print the created DataFrame.Example Live Demoimport pandas as pd import random df = pd.DataFrame(    {       "x": [],       "y": [],       "z": []    } ) print "Input DataFrame:", df for i in range(10):    df.loc[i] = [i, random.randint(1, 10), random.randint(1, 10)] print "After ... Read More

How to change the order of Pandas DataFrame columns?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:30:30

318 Views

To change the order of DataFrame columns, we can take the following Steps −StepsMake two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Get the list of DataFrame columns, using df.columns.tolist()Change the order of DataFrame columns.Modify the order of columns of the DataFrame.Print the DataFrame after changing the columns order.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df cols = df.columns.tolist() cols = cols[-1:] + ... Read More

How to get the list of column headers from a Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:26:32

2K+ Views

To get a list of Pandas DataFrame column headers, we can use df.columns.values.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Print the list of df.columns.values output.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df print "List of headers are: ", list(df.columns.values)OutputInput DataFrame is:    x  y  z 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0 List of headers are: ['x', 'y', 'z']

How to get the row count of a Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:22:48

509 Views

To get the row count of a Pandas DataFrame, we can use the length of DataFrame index.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Print the length of the DataFrame index list, len(df.index).Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df print "Row count of DataFrame is: ", len(df.index)OutputInput DataFrame is:    x  y  z 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0 Row count of DataFrame is: 4

Select multiple columns in a Pandas DataFrame

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:20:35

2K+ Views

To select multiple columns in a Pandas DataFrame, we can create new a DataFrame from the existing DataFrameStepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Create a new DataFrame, df1, with selection of multiple columns.Print the new DataFrame with multiple selected columns.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Input DataFrame is:", df df1 = df[['x', 'y']] print "After selecting multiple columns:", df1OutputInput DataFrame is:    x  y  z 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0 After selecting multiple columns:    x  y 0  5  4 1  2  1 2  1  5 3  9 10

How to rename column names in a Pandas DataFrame?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:15:30

420 Views

To rename columns in a Pandas DataFrame, we can override df.columns with the new column names.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Override the columns with new list of column names.Print the DataFrame again with the renamed column names.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print("Input DataFrame is:", df) df.columns = ["a", "b", "c"] print("After renaming, DataFrame is:", df)OutputInput DataFrame is:    x  y  z 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0 After renaming, DataFrame is:    a  b  c 0  5  4  4 1  2  1  1 2  1  5  5 3  9 10  0

Select rows from a Pandas DataFrame based on column values

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 09:13:15

913 Views

To select rows from a DataFrame based on column values, we can take the following Steps −Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame.Use df.loc[df["x"]==2] to print the DataFrame when x==2.Similarly, print the DataFrame when (x >= 2) and (x < 2).Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Given DataFrame is:", df print "When column x value == 2:", df.loc[df["x"] == 2] ... Read More

How to iterate over rows in a DataFrame in Pandas?

Rishikesh Kumar Rishi
Updated on 30-Aug-2021 06:54:29

355 Views

To iterate rows in a DataFrame in Pandas, we can use the iterrows() method, which will iterate over DataFrame rows as (index, Series) pairs.StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Iterate df using df.iterrows() method.Print each row with index.Example Live Demoimport pandas as pd df = pd.DataFrame(    {       "x": [5, 2, 1, 9],       "y": [4, 1, 5, 10],       "z": [4, 1, 5, 0]    } ) print "Given DataFrame:", df for index, row in df.iterrows():    print "Row ", index, "contains: "    print row["x"], row["y"], row["z"]OutputGiven DataFrame:    x   y   z 0  5   4   4 1  2   1   1 2  1   5   5 3  9  10   0 Row 0 contains: 5 4 4 Row 1 contains: 2 1 1 Row 2 contains: 1 5 5 Row 3 contains: 9 10 0

How to find the number of times array is rotated in the sorted array by recursion using C#?

Nizamuddin Siddiqui
Updated on 27-Aug-2021 13:47:21

318 Views

Find index of mid element (minimum element) Apply Binary Search on the subarray based on following conditions −If number lies between start element and element at mid1 position.Then find number in array start to mid-1 using binary searchElse if number lies between mid and last element, then find number in array mid to last element using binary search.Example Live Demousing System; using System.Collections.Generic; using System.Text; using System.Linq; namespace ConsoleApplication{    public class Arrays{       public int FindNumberRotated(int[] array, int start, int end, int value){          if (start > end){             return ... Read More

Advertisements