Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Add two vectors using broadcasting in Numpy
To produce an object that mimics broadcasting, use the numpy.broadcast() method in Python Numpy. A set of arrays is said to be broadcastable if the above rules produce a valid result and one of the following is true −
- Arrays have exactly the same shape.
- Arrays have the same number of dimensions and the length of each dimension is either a common length or 1.
- Array having too few dimensions can have its shape prepended with a dimension of length 1, so that the above stated property is true.
Steps
At first, import the required library −
import numpy as np
Create two arrays −
arr1 = np.array([[5, 10, 15], [25, 30, 35]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]])
Display the arrays −
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
Get the type of the arrays −
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
Get the dimensions of the Arrays −
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
Get the shape of the Arrays −
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
To produce an object that mimics broadcasting, use the numpy.broadcast () method −
x = np.broadcast(arr1, arr2)
res = np.empty(x.shape)
res.flat = [i+j for (i,j) in x]
print("
Result...
",res)
Example
import numpy as np
# Create two arrays
arr1 = np.array([[5, 10, 15], [25, 30, 35]])
arr2 = np.array([[7, 14, 21], [28, 35, 56]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# To produce an object that mimics broadcasting, use the numpy.add() method in Python Numpy
x = np.broadcast(arr1, arr2)
res = np.empty(x.shape)
res.flat = [i+j for (i,j) in x]
print("
Result...
",res)
Output
Array 1... [[ 5 10 15] [25 30 35]] Array 2... [[ 7 14 21] [28 35 56]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result... [[12. 24. 36.] [53. 65. 91.]]
Advertisements