Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Suppress only columns that contain masked values using compress_rowcols() along specific axis in Numpy
To suppress only columns of a 2-D array that contain masked values along specific axis, use the np.ma.mask_compress_rowcols() method in Numpy. The suppression behavior is selected with the axis parameter
- If axis is None, both rows and columns are suppressed.
- If axis is 0, only rows are suppressed.
- If axis is 1 or -1, only columns are suppressed
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
To suppress only columns of a 2-D array that contain masked values along specific axis, use the np.ma.mask_compress_rowcols() method. The suppression behavior is selected with the axis parameter. If axis is None, both rows and columns are suppressed. If axis is 0, only rows are suppressed. If axis is 1 or -1, only columns are suppressed −
print("
Result...
",np.ma.compress_rowcols(maskArr, axis = 1))
Example
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# To suppress only columns of a 2-D array that contain masked values alomg specific axis, use the np.ma.mask_compress_rowcols() method in Numpy
# The suppression behavior is selected with the axis parameter
# If axis is None, both rows and columns are suppressed.
# If axis is 0, only rows are suppressed.
# If axis is 1 or -1, only columns are suppressed
print("
Result...
",np.ma.compress_rowcols(maskArr, axis = 1))
Output
Array... [[65 68 81] [93 33 76] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [93 33 76] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[81] [76] [51] [67]]