Show that:
(i) $(3x + 7)^2 - 84x = (3x - 7)^2$
(ii) $(9a - 5b)^2 + 180ab = (9a + 5b)^2$
(iii) $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$
(iv) $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$
(v) $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$


To do:

We have to show that:

(i) $(3x + 7)^2 - 84x = (3x - 7)^2$

(ii) $(9a - 5b)^2 + 180ab = (9a + 5b)^2$

(iii) $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$

(iv) $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$

(v) $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$

Solution:

To show that LHS $=$ RHS in each case, we can use the following algebraic identities:

$(a+b)^2=a^2+2ab+b^2$.............(I)

$(a-b)^2=a^2-2ab+b^2$.............(II)

$(a+b)(a-b)=a^2-b^2$................(III)

(i)  The given equation is $(3x + 7)^2 - 84x = (3x - 7)^2$

Let us consider LHS,

$(3x + 7)^2 - 84x =(3x)^2+2(3x)(7)+(7)^2-84x$              [Using (I)]

$(3x + 7)^2 - 84x =9x^2+42x+49-84x$

$(3x + 7)^2 - 84x =9x^2+42x-84x+49$

$(3x + 7)^2 - 84x =9x^2-42x+49$

$(3x + 7)^2 - 84x =(3x)^2-2(3x)(7)+(7)^2$

$(3x + 7)^2 - 84x =(3x-7)^2$              [Using (II)]

LHS $=$ RHS

Hence proved

(ii) The given equation is  $(9a - 5b)^2 + 180ab = (9a + 5b)^2$

Let us consider LHS,

$(9a - 5b)^2 + 180ab =(9a)^2-2(9a)(5b)+(5b)^2+180ab$              [Using (II)]

$(9a - 5b)^2 + 180ab =(9a)^2-90ab+(5b)^2+180ab$

$(9a - 5b)^2 + 180ab =(9a)^2-90ab+180ab+(5b)^2$

$(9a - 5b)^2 + 180ab =(9a)^2+90ab+(5b)^2$

$(9a - 5b)^2 + 180ab =(9a)^2+2(9a)(5b)+(5b)^2$

$(9a - 5b)^2 + 180ab =(9a+5b)^2$              [Using (I)]

LHS $=$ RHS

Hence proved

(iii) The given equation is $(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn = \frac{16m^2}{9} + \frac{9n^2}{16}$

Let us consider LHS,

$(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn =(\frac{4m}{3})^2-2(\frac{4m}{3})(\frac{3n}{4})+(\frac{3n}{4})^2+2mn$              [Using (II)]

$(\frac{4m}{3} - \frac{3n}{4})^2 + 2mn =(\frac{4m}{3})^2-2mn+(\frac{3n}{4})^2+2mn$

$(\frac{4m}{3}-\frac{3n}{4})^2+2mn=\frac{(4m)^2}{3^2}-2mn+2mn+\frac{(3n)^2}{4^2}$

$(\frac{4m}{3}-\frac{3n}{4})^2+2mn=\frac{16m^2}{9}+\frac{9n^2}{16}$

LHS $=$ RHS

Hence proved

(iv) The given equation is $(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2$

Let us consider LHS,

$(4pq + 3q)^2 - (4pq - 3q)^2 =[(4pq)^2+2(4pq)(3q)+(3q)^2]-[(4pq)^2-2(4pq)(3q)+(3q)^2]$              [Using (I) and (II)]

$(4pq + 3q)^2 - (4pq - 3q)^2 =(4pq)^2+24pq^2+(3q)^2-(4pq)^2+24pq^2-(3q)^2$

$(4pq + 3q)^2 - (4pq - 3q)^2 =(4pq)^2-(4pq)^2+24pq^2+24pq^2+(3q)^2-(3q)^2$

$(4pq + 3q)^2 - (4pq - 3q)^2 =48pq^2$

LHS $=$ RHS

Hence proved

(v) The given equation is $(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) = 0$

Let us consider LHS,

$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =a^2-b^2+b^2-c^2+c^2-a^2$              [Using (III)]

$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =a^2-a^2-b^2+b^2-c^2+c^2$

$(a - b) (a + b) + (b - c) (b + c) + (c - a) (c + a) =0$

LHS $=$ RHS

Hence proved

Updated on: 03-Apr-2023

41 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements