

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Set storage-indexed locations to corresponding values and wrap out-of-bounds indices in Numpy
To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Python Numpy. Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If values has some masked values, the initial mask is updated in consequence, else the corresponding values are unmasked.
The indices are the target indices, interpreted as integers. The mode specifies how out-of-bounds indices will behave. ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy. The "mode" parameter is specify how out-of-bounds indices will behave. The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. We have set an out-of-bounds indice here i.e. 32. The "wrap" parameter will wrap around −
maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("\nResult...\n",maskArr)
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy # The "mode" parameter is specify how out-of-bounds indices will behave. # The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. # We have set an out-of-bounds indice here i.e. 32 # The "wrap" parameter will wrap around maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("\nResult...\n",maskArr)
Output
Array... [[55 85 59 77] [67 33 39 57] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 59 77] [67 33 -- 57] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result... [[66 99 59 77] [67 88 33 57] [29 55 51 --] [56 -- 99 85]]
- Related Questions & Answers
- Set storage-indexed locations to corresponding values and clip out-of-bounds indices to range in Numpy
- Set storage-indexed locations to corresponding values in Numpy
- Find the indices of the first and last unmasked values in Numpy
- How to capture out of array index out of bounds exception in Java?
- Accessing array out of bounds in C/C++
- How to handle Java Array Index Out of Bounds Exception?
- Storage of integer and character values in C
- Return array of indices of the maximum values from a masked array in NumPy
- Return array of indices of the minimum values from a masked array in NumPy
- What is out of bounds index in an array - C language?
- Set Bounds for JProgressBar in Java Swing
- Return the indices of unmasked elements that are not zero and group the indices by element in NumPy
- Return array of indices of the maximum values along axis 0 from a masked array in NumPy
- Return array of indices of the maximum values along axis 1 from a masked array in NumPy
- Return array of indices of the minimum values along axis 0 from a masked array in NumPy