# Scikit Learn - Gaussian Naïve Bayes

As the name suggest, Gaussian Naïve Bayes classifier assumes that the data from each label is drawn from a simple Gaussian distribution. The Scikit-learn provides sklearn.naive_bayes.GaussianNB to implement the Gaussian Naïve Bayes algorithm for classification.

## Parameters

Following table consist the parameters used by sklearn.naive_bayes.GaussianNB method −

Sr.No Parameter & Description
1

priors − arrray-like, shape(n_classes)

It represents the prior probabilities of the classes. If we specify this parameter while fitting the data, then the prior probabilities will not be justified according to the data.

2

Var_smoothing − float, optional, default = 1e-9

This parameter gives the portion of the largest variance of the features that is added to variance in order to stabilize calculation.

## Attributes

Following table consist the attributes used by sklearn.naive_bayes.GaussianNB method −

Sr.No Attributes & Description
1

class_prior_ − array, shape(n_classes,)

It provides the probability of every class.

2

class_count_ − array, shape(n_classes,)

It provides the actual number of training samples observed in every class.

3

theta_ − array, shape (n_classes, n_features)

It gives the mean of each feature per class.

4

sigma_ − array, shape (n_classes, n_features)

It gives the variance of each feature per class.

5

epsilon_ − float

These are the absolute additive value to variance.

## Methods

Following table consist the methods used by sklearn.naive_bayes.GaussianNB method −

Sr.No Method & Description
1

fit(self, X, y[, sample_weight])

This method will Fit Gaussian Naive Bayes classifier according to X and y.

2

get_params(self[, deep])

With the help of this method we can get the parameters for this estimator.

3

partial_fit(self, X, y[,classes, sample_weight])

This method allows the incremental fit on a batch of samples.

4

predict(self, X)

This method will perform classification on an array of test vectors X.

5

predict_log_proba(self, X)

This method will return the log-probability estimates for the test vector X.

6

predict_proba(self, X)

This method will return the probability estimates for the test vector X.

7

score(self, X, y[, sample_weight])

With this method we can get the mean accuracy on the given test data and labels.

9

set_params(self, \*\*params)

This method allows us to set the parameters of this estimator.

### Implementation Example

The Python script below will use sklearn.naive_bayes.GaussianNB method to construct Gaussian Naïve Bayes Classifier from our data set −

### Example

import numpy as np
X = np.array([[-1, -1], [-2, -4], [-4, -6], [1, 2]])
Y = np.array([1, 1, 2, 2])
from sklearn.naive_bayes import GaussianNB
GNBclf = GaussianNB()
GNBclf.fit(X, Y)


### Output

GaussianNB(priors = None, var_smoothing = 1e-09)


Now, once fitted we can predict the new value by using predict() method as follows −

### Example

print((GNBclf.predict([[-0.5, 2]]))


### Output 