- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return True if two Numpy arrays are element-wise equal within a tolerance
To return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy. This function is equivalent to allclose except that masked values are treated as equal (default) or unequal, depending on the masked_equal argument. The "masked_values" parameter is used to set the masked values in both the arrays are considered equal (True) or not (False).
Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not
Steps
At first, import the required library −
import numpy as np
Creating a 3x3 array with int elements using the numpy.arange() method −
arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype)
Create a masked array1 −
arr1 = ma.array(arr1)
Mask Array1 −
arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked
Display Masked Array 1 −
print("
Masked Array1...
",arr1)
Creating another 3x3 array with int elements using the numpy.arange() method
arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)
Create masked array2 −
arr2 = ma.array(arr2)
Mask Array2 −
arr2[2, 0] = ma.masked arr2[2, 2] = ma.masked
Display Masked Array 2 −
print("
Masked Array2...
",arr2)
To return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy −
print("
Result...
",ma.allclose(arr1, arr2))
Example
import numpy as np import numpy.ma as ma # Array 1 # Creating a 3x3 array with int elements using the numpy.arange() method arr1 = np.arange(9).reshape((3,3)) print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 0] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To Return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy print("
Result...
",ma.allclose(arr1, arr2))
Output
Array1... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array1... [[0 -- 2] [3 -- 5] [6 7 8]] Array2... [[0 1 2] [3 4 5] [6 7 8]] Array type... int64 Array Dimensions... 2 Our Array Shape... (3, 3) Elements in the Array... 9 Masked Array2... [[0 1 2] [3 4 5] [-- 7 --]] Result... True
- Related Articles
- Compare and return True if two string arrays are equal in Numpy
- Return True if all entries of two arrays are equal in Numpy
- Compare and return True if two string Numpy arrays are not equal
- Compare two arrays and return the element-wise minimum in Numpy
- Compare two arrays and return the element-wise maximum in Numpy
- Compare two Numpy arrays and return the element-wise maximum with fmax()
- Compare two Numpy arrays and return the element-wise minimum ignoring NaNs
- Compare two Numpy arrays and return the element-wise minimum with fmin()
- Return element-wise string concatenation for two arrays of string in Numpy
- Compare two arrays and return the element-wise maximum ignoring NaNs in Numpy
- Compute the bit-wise OR of two Numpy arrays element-wise
- Compute the bit-wise XOR of two Numpy arrays element-wise
- Compare two Numpy arrays with some Inf values and return the element-wise minimum
- Element wise concatenation of two NumPy arrays of string
- Compute the bit-wise AND of two arrays element-wise in Numpy
