- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return the variance of the masked array elements along column axis in Numpy
To return the variance of the masked array elements, use the ma.MaskedArray.var() in Numpy. The axis is set using the axis parameter. The axis is set to 0, for column axis.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis.
The “axis” parameter is the axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. The dtype is the type to use in computing the variance. For arrays of integer type the default is float64; for arrays of float types it is the same as the array type.
If “keepdims” is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
To return the variance of the masked array elements, use the ma.MaskedArray.var() in Numpy. The axis is set using the axis parameter. The axis is set to 0, for column axis −
res = maskArr.var(axis = 0) print("
Result..
.", res)
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return the variance of the masked array elements, use the ma.MaskedArray.var() in Numpy # The axis is set using the axis parameter # The axis is set to 0, for column axis res = maskArr.var(axis = 0) print("
Result..
.", res)
Output
Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result.. . [254.88888889 756.25 394.88888889 220.66666667]
- Related Articles
- Return the variance of the masked array elements along given axis in Numpy
- Return the variance of the masked array elements along row axis
- Return the standard deviation of the masked array elements along column axis in NumPy
- Return the variance of the masked array elements in Numpy
- Return the average of the masked array elements along specific axis in Numpy
- Return the standard deviation of the masked array elements along given axis in NumPy
- Return the standard deviation of the masked array elements along row axis in NumPy
- Count the non-masked elements of the masked array along axis 0 in Numpy
- Count the non-masked elements of the masked array along axis 1 in Numpy
- Count the non-masked elements of the masked array along the given axis in Numpy
- Return the average of the masked array elements axis 1 in Numpy
- Compute the median of the masked array elements along specified axis in Numpy
- Compute the median of the masked array elements along axis 0 in Numpy
- Repeat elements of a masked array along given axis in NumPy
- Repeat elements of a masked array along axis 1 in NumPy
