# Return the copy of a masked array cast to a specified type in Numpy

NumpyServer Side ProgrammingProgramming

#### Python Data Science basics with Numpy, Pandas and Matplotlib

Most Popular

63 Lectures 6 hours

#### Data Analysis using NumPy and Pandas

19 Lectures 8 hours

#### Numpy with Python

Most Popular

12 Lectures 3 hours

To return the copy of the array, cast to a specified type, use the ma.MaskedArray.astype() method in Numpy. The parameter is the data-type to which the array is cast. Another parameter, order controls the memory layout order of the result. ‘C’ means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory as possible. Default is ‘K’.

Casting between a simple data type and a structured one is possible only for “unsafe” casting.

Casting to multiple fields is allowed, but casting from multiple fields is not.

Returns the ndarray, unless copy is False and the other conditions for returning the input array are satisfied, arr_t is a new array of the same shape as the input array, with dtype, order given by dtype, order.

## Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Create an array with int elements using the numpy.array() method −

arr = np.array([[35, 85, 45], [67, 33, 59]])
print("Array...\n", arr)
print("\nArray type...\n", arr.dtype)

Get the dimensions of the Array −

print("Array Dimensions...\n",arr.ndim)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])
print("\nOur Masked Array type...\n", maskArr.dtype)

Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)

Get the shape of the Masked Array −

print("\nOur Masked Array Shape...\n",maskArr.shape)

Get the number of elements of the Masked Array −

print("\nElements in the Masked Array...\n",maskArr.size)


Return the copy of the array, cast to a specified type, use the ma.MaskedArray.astype() method in Numpy −

print("\nCopy of the array cast to float type...\n",maskArr.astype(float))

## Example

# Python ma.MaskedArray - Copy of the array, cast to a specified type

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[35, 85, 45], [67, 33, 59]])
print("Array...\n", arr)
print("\nArray type...\n", arr.dtype)

# Get the dimensions of the Array
print("Array Dimensions...\n",arr.ndim)

# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])

# Get the dimensions of the Masked Array

# Get the shape of the Masked Array

# Get the number of elements of the Masked Array

# To return the copy of the array, cast to a specified type, use the ma.MaskedArray.astype() method in Numpy
# Here, the parameter is the data-type to which the array is cast
print("\nCopy of the array cast to float type...\n",maskArr.astype(float))

## Output

Array...
[[35 85 45]
[67 33 59]]

Array type...
int32

Array Dimensions...
2

[[35 85 --]
[67 -- 59]]

Our Masked Array type...
int32

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(2, 3)

Elements in the Masked Array...
6

Copy of the array cast to float type...
[[35.0 85.0 --]
[67.0 -- 59.0]]