

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return an ndarray of indices that sort the masked array along the specified axis in NumPy
To return an ndarray of indices that sort the array, use the ma.MaskedArray.argsort() method in Numpy. The axis is set using the "axis" parameter i.e. the Axis along which to sort.
Returns an Array of indices that sort a along the specified axis. In other words, a[index_array] yields a sorted a. The axis is the axis along which to sort. If None, the default, the flattened array is used. The order is when a is an array with fields defined, this argument specifies which fields to compare first, second, etc. Not all fields need be specified. The fill_value is the value used internally for the masked values. If fill_value is not None, it supersedes endwith.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
Return an ndarray of indices that sort the array, use the ma.MaskedArray.argsort() method in Numpy. The axis is set using the "axis" parameter i.e the Axis along which to sort. If None, the default, the flattened array is used −
print("\nResult...\n",maskArr.argsort(axis = None))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85], [67, 33], [29, 88], [56, 45]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 0], [ 0, 0], [0, 0], [0, 1]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To return an ndarray of indices that sort the array, use the ma.MaskedArray.argsort() method in Numpy # The axis is set using the "axis" parameter i.e the Axis along which to sort. # If None, the default, the flattened array is used. print("\nResult...\n",maskArr.argsort(axis = None))
Output
Array... [[55 85] [67 33] [29 88] [56 45]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- 85] [67 33] [29 88] [56 --]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 2) Elements in the Masked Array... 8 Result... [4 3 6 2 1 5 0 7]
- Related Questions & Answers
- Return an ndarray of indices that sort the masked array along axis 0 in NumPy
- Return an ndarray of indices that sort the masked array along axis 1 in NumPy
- Return array of indices of the maximum values along axis 0 from a masked array in NumPy
- Return array of indices of the maximum values along axis 1 from a masked array in NumPy
- Return array of indices of the minimum values along axis 0 from a masked array in NumPy
- Return array of indices of the minimum values along axis 1 from a masked array in NumPy
- Compute the median of the masked array elements along specified axis in Numpy
- Sort the masked array in-place along last axis in NumPy
- Sort the masked array in-place along axis 0 in NumPy
- Sort the masked array in-place along axis 1 in NumPy
- Return the average of the masked array elements along specific axis in Numpy
- Return the variance of the masked array elements along column axis in Numpy
- Return the variance of the masked array elements along given axis in Numpy
- Return the standard deviation of the masked array elements along given axis in NumPy
- Return the standard deviation of the masked array elements along row axis in NumPy