- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return a new array of given shape without initializing entries in Numpy
To return a new array of given shape and type, without initializing entries, use the numpy.empty() method in Python Numpy. The dtype is the desired output data-type for the array, e.g, numpy.int8. Default is numpy.float64. The order suggests whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.
The function empty() returns an array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np
To return a new array of given shape and type, without initializing entries, use the numpy.empty() method in Python Numpy −
arr = np.empty([3, 3, 3])
Display the array −
print("Array...
",arr)
Get the type of the array −
print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Our Array Dimensions...
", arr.ndim)
Get the number of elements in the Array −
print("
Number of elements...
", arr.size)
Example
import numpy as np # To return a new array of given shape and type, without initializing entries, use the numpy.empty() method in Python Numpy arr = np.empty([3, 3, 3]) # Display the array print("Array...
",arr) # Get the type of the array print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
", arr.ndim) # Get the number of elements in the Array print("
Number of elements...
", arr.size)
Output
Array... [[[4.64759419e-310 0.00000000e+000 6.90799318e-310] [6.90799318e-310 6.90799319e-310 6.90799319e-310] [6.90799152e-310 6.90785783e-310 6.90799318e-310]] [[6.90799165e-310 6.90785780e-310 6.90785780e-310] [6.90799317e-310 6.90799317e-310 6.90785780e-310] [6.90799318e-310 6.90799314e-310 6.90799320e-310]] [[6.90785780e-310 6.90799318e-310 6.90785780e-310] [6.90799320e-310 6.90799317e-310 6.90785780e-310] [6.90799320e-310 6.90799318e-310 1.10670705e-321]]] Array type... float64 Our Array Dimensions... 3 Number of elements... 27
- Related Articles
- Return a new array of given shape and type without initializing entries in Numpy
- Return a new array of given shape without initializing entries and change the default type in Numpy
- Return a new Three-Dimensional array without initializing entries in Numpy
- Return a new Three-Dimensional array without initializing entries and change the order in Numpy
- Return a new Three-Dimensional array without initializing entries and store the data in column-major order in Numpy
- Return a new Three-Dimensional array without initializing entries and store the data in row-major order in Numpy
- Return a new array of given shape filled with ones in Numpy
- Return a new array of given shape filled with zeros in Numpy
- Return a new array of a given shape filled with ones in Numpy
- Return a new array of given shape and type, filled with array-like in Numpy
- Return a new array with the same shape and type as given array in Numpy
- Return a new array with the same shape and type as a given array in Numpy
- Return a new array of given shape and type filled with a fill value in Numpy
- Return a new array of given shape filled with ones but with different datatype in Numpy
- Return a new array with the same shape as a given array but change the default type in Numpy
