

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Repeat elements of a masked array along given axis in NumPy
To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy. The "repeats" parameter sets the number of repetitions for each element. The repeats is broadcasted to fit the shape. The "axis" parameter is the axis along which to repeat values.
The method returns the output array which has the same shape as a, except along the given axis. The axis is the axis along which to repeat values. By default, use the flattened input array, and return a flat output array.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy. The "repeats" parameter sets the number of repetitions for each element. The repeats is broadcasted to fit the shape. The "axis" parameter is the axis along which to repeat values. By default, use the flattened input array, and return a flat output array −
print("\nResult...\n",maskArr.repeat(3, axis = 0))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To repeat elements of a masked array, use the ma.MaskedArray.repeat() method in Numpy # The "repeats" parameter sets the number of repetitions for each element. # The repeats is broadcasted to fit the shape. # The "axis" parameter is the axis along which to repeat values. # By default, use the flattened input array, and return a flat output array. print("\nResult...\n",maskArr.repeat(3, axis = 0))
Output
Array... [[55 85 59 77] [67 33 39 57] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 59 77] [67 33 -- 57] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result... [[-- -- 59 77] [-- -- 59 77] [-- -- 59 77] [67 33 -- 57] [67 33 -- 57] [67 33 -- 57] [29 88 51 --] [29 88 51 --] [29 88 51 --] [56 -- 99 85] [56 -- 99 85] [56 -- 99 85]]
- Related Questions & Answers
- Repeat elements of a masked array along axis 1 in NumPy
- Repeat elements of a masked array along axis 0 in NumPy
- Count the non-masked elements of the masked array along the given axis in Numpy
- Compute the maximum of the masked array elements along a given axis in Numpy
- Compute the minimum of the masked array elements along a given axis in Numpy
- Return the variance of the masked array elements along given axis in Numpy
- Repeat elements of a masked array in Numpy
- Return the standard deviation of the masked array elements along given axis in NumPy
- Count the non-masked elements of the masked array along axis 0 in Numpy
- Count the non-masked elements of the masked array along axis 1 in Numpy
- Return range of values from a masked array along a given axis in NumPy
- Return the average of the masked array elements along specific axis in Numpy
- Compute the median of the masked array elements along specified axis in Numpy
- Compute the median of the masked array elements along axis 0 in Numpy
- Return the variance of the masked array elements along column axis in Numpy