- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Raise a given scalar value to each and every element of a masked array in NumPy
To raise a given scalar value to each and every element of a masked array, use the ma.MaskedArray.__rpow__() method in Python Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[8, 6, 1, 4], [6, 3, 9, 5], [9, 8, 1, 3], [5, 4, 7, 5]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
The scalar −
val = 3 print("
The given value..
",val)
To raise a given scalar value to each and every element of a masked array, use the ma.MaskedArray.__rpow__() method −
print("
Resultant Array...
",maskArr.__rpow__(val))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[8, 6, 1, 4], [6, 3, 9, 5], [9, 8, 1, 3], [5, 4, 7, 5]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0],[0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # The scalar val = 3 print("
The given value..
",val) # To raise a given scalar value to each and every element of a masked array, # use the ma.MaskedArray.__rpow__() method print("
Resultant Array...
",maskArr.__rpow__(val))
Output
Array... [[8 6 1 4] [6 3 9 5] [9 8 1 3] [5 4 7 5]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 1 4] [6 3 -- 5] [9 8 1 --] [5 -- 7 5]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The given value.. 3 Resultant Array... [[-- -- 3 81] [729 27 -- 243] [19683 6561 3 --] [243 -- 2187 243]]
- Related Articles
- Raise each and every element of a masked array to a given scalar value in NumPy
- Raise each and every element of a masked array to a given scalar value in-place using __ipow__() in Numpy
- AND every element of a masked array by a given scalar value using __iand__() in Numpy
- Left Shift every element of a masked array by a given scalar value in NumPy
- Left Shift a given scalar value by every element of a masked array in NumPy
- Add every element of a masked Array with a scalar value in NumPy
- Subtract a scalar value from every element of a masked Array in NumPy
- Divide a scalar value into every element of a masked Array in NumPy
- XOR every element of a masked array by a given scalar value using __ixor__() in Numpy
- Left Shift every element of a masked array by a given scalar value using __ilshift__() in Numpy
- Right Shift every element of a masked array by a given scalar value using __irshift__() in Numpy
- AND every element of a masked array by a given scalar value in Python
- AND a given scalar value with every element of a masked array in Python
- Subtract every element from a scalar value and return a new masked Array in NumPy
- Divide a scalar value into every element of a masked Array with __truediv__() in NumPy
