- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas - Sort within groups
Sorting within groups is useful for analyzing data by specific categories, which is allowing us to manage and process subsets of data independently within a DataFrame. Pandas provides the groupby() function to split your data into groups based on certain criteria.
This is useful for performing operations like aggregation, transformation, filtration and sorting data within the groups.
In this tutorial, we will learn how to use the groupby() function in Pandas to sort data within groups.
GroupBy Sort
By default, when we use groupby() on a DataFrame, the group keys are automatically sorted in ascending order. If we need to maintain the original order of keys as they appear in the DataFrame, we can set the sort parameter to False.
Setting sort=False can also improve the speed of operation of the groupby() method, as no sorting of the group keys is required.
Example: Default Sorting Behavior of the GroupBy
Here is the basic example of demonstrating the default sorting behavior of the groupby() method.
import pandas as pd
# Create a sample DataFrame
data = {"Group": ["B", "B", "A", "A", "C", "B", "A"], "Values": [1, 2, 3, 4, 6, 5, 7]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Grouping and summing with default sorting
grouped_default = df.groupby("Group").sum()
print("\nGrouped and summed with default sorting:")
print(grouped_default)
Following is the output of the above code −
Original DataFrame:
| Group | Values | |
|---|---|---|
| 0 | B | 1 |
| 1 | B | 2 |
| 2 | A | 3 |
| 3 | A | 4 |
| 4 | C | 6 |
| 5 | B | 5 |
| 6 | A | 7 |
| Values | |
|---|---|
| Group | |
| A | 14 |
| B | 8 |
| C | 6 |
Example: Disabling GroupBy Sorting
To disable the default sorting behavior of the Pandas grouping operation, we can pass the sort=False to the groupby() method. Which will maintain the original DataFrame order even after grouping the data.
import pandas as pd
# Create a sample DataFrame
data = {"Group": ["B", "B", "A", "A", "C", "B", "A"], "Values": [1, 2, 3, 4, 6, 5, 7]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Group by 'Group' column without sorting
result = df.groupby("Group", sort=False).sum()
print("\nGrouped and summed without sorting:")
print(result)
Following is the output of the above code −
Original DataFrame:
| Group | Values | |
|---|---|---|
| 0 | B | 1 |
| 1 | B | 2 |
| 2 | A | 3 |
| 3 | A | 4 |
| 4 | C | 6 |
| 5 | B | 5 |
| 6 | A | 7 |
| Values | |
|---|---|
| Group | |
| B | 8 |
| A | 14 |
| C | 6 |
GroupBy Sort Index
You can also sort the resulting DataFrame by the index after performing a grouping operation. This is particularly useful when you want to order the aggregated results explicitly.
Example
The following example demonstrates how to sort the grouped data by their index in descending order using the sort_index(ascending=False) method.
import pandas as pd
# Create a sample DataFrame
data = {"Group": ["B", "B", "A", "A", "C", "B", "A"], "Values": [1, 2, 3, 4, 6, 5, 7]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Grouping and summing with default sorting
grouped_default = df.groupby("Group").sum()
# Sort the grouped result by index in descending order
result = grouped_default.sort_index(ascending=False)
print("\nGrouped result sorted by index (descending):")
print(result)
Following is the output of the above code −
Original DataFrame:
| Group | Values | |
|---|---|---|
| 0 | B | 1 |
| 1 | B | 2 |
| 2 | A | 3 |
| 3 | A | 4 |
| 4 | C | 6 |
| 5 | B | 5 |
| 6 | A | 7 |
| Values | |
|---|---|
| Group | |
| C | 6 |
| B | 8 |
| A | 14 |
Sorting Groups by Size
Sorting the groups based on their sizes (i.e., the number of elements of each group) can be done by using the size() and sort_values() methods. This operation provides insights into which groups have more data points.
Example
The following example demonstrates how to sort grouped data based on its size.
import pandas as pd
# Create a sample DataFrame
data = {"Group": ["B", "B", "A", "A", "C", "B", "A"], "Values": [1, 2, 3, 4, 6, 5, 7]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Group the data and count the sizes of each group
group_sizes = df.groupby("Group").size()
# Sort the sizes in descending order
sorted_by_size = group_sizes.sort_values(ascending=False)
print("\nGroup sizes sorted by size (descending):")
print(sorted_by_size)
Following is the output of the above code −
Original DataFrame:
| Group | Values | |
|---|---|---|
| 0 | B | 1 |
| 1 | B | 2 |
| 2 | A | 3 |
| 3 | A | 4 |
| 4 | C | 6 |
| 5 | B | 5 |
| 6 | A | 7 |
Sorting Groups by Another Column
You can also sort the groups based on the values in another column after aggregation.
Example
The following example sorts the grouped data based on the values in another column after aggregation.
import pandas as pd
# Create a sample DataFrame
data = {"Group": ["B", "B", "A", "A", "C", "B", "A"], "Values": [1, 2, 3, 4, 6, 5, 7]}
df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)
# Group the data and sum, then sort by 'Values' column in ascending order
sorted_by_values = df.groupby("Group").sum().sort_values(by="Values", ascending=False)
print("\nGrouped result sorted by 'Values' (descending):")
print(sorted_by_values)
Following is the output of the above code −
Original DataFrame:
| Group | Values | |
|---|---|---|
| 0 | B | 1 |
| 1 | B | 2 |
| 2 | A | 3 |
| 3 | A | 4 |
| 4 | C | 6 |
| 5 | B | 5 |
| 6 | A | 7 |
| Values | |
|---|---|
| Group | |
| A | 14 |
| B | 8 |
| C | 6 |