- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Pandas set_categories() Method
The set_categories() method in Pandas is a useful tool for performing more than one operation on categorical object simultaneously. This method allows you to redefine categories by adding new ones, removing unwanted categories, renaming existing ones, or changing the order of categories all at once.
This method is a part of Pandas Series.cat accessor (an alias for CategoricalAccessor), specifically designed for categorical data. It is a straightforward and easy-to-use method for performing multiple operations in a single call on both Categorical Series or CategoricalIndex objects.
Syntax
Below you can see the syntax of the Python Pandas set_categories() method, calling this method slightly differs for both the Categorical Series or CategoricalIndex objects.
Syntax for a Pandas Categorical Series −
Series.cat.set_categories(*args, **kwargs)
Syntax for a CategoricalIndex −
CategoricalIndex.set_categories(*args, **kwargs)
Parameters
The Python Pandas set_categories() method accepts the below parameters −
new_categories:A list-like object representing new categories.
ordered: Specifying if the categories should be treated as ordered. Default it is set to False.
rename: It is also a boolean parameter, If set to True, treats new_categories as a renaming operation. By default it is False.
Return Value
The Pandas set_categories() method returns a Categorical Series or CategoricalIndex object with updated categories.
Example: Basic Example
This example demonstrates the basic functionality of the Series.cat.set_categories() method by renaming categories using the rename=True parameter.
import pandas as pd
# Create a categorical Series
data = pd.Categorical(['apple', 'banana', 'cherry'], categories=['apple', 'banana', 'cherry'])
s = pd.Series(data)
print("Original Series:")
print(s)
# Rename categories
s = s.cat.set_categories(['fruit_1', 'fruit_2', 'fruit_3'], rename=True)
print("\nSeries after renaming categories:")
print(s)
When we run above program, it produces following result −
Original Series: 0 apple 1 banana 2 cherry dtype: category Categories (3, object): ['apple', 'banana', 'cherry'] Series after renaming categories: 0 fruit_1 1 fruit_2 2 fruit_3 dtype: category Categories (3, object): ['fruit_1', 'fruit_2', 'fruit_3']
Example: Reordering Categories in a Categorical Series
The following example demonstrates using the Pandas set_categories() method for reordering the categories of a Series object.
import pandas as pd
# Create a categorical Series
data = pd.Categorical(['low', 'medium', 'high'], categories=['low', 'medium', 'high'], ordered=True)
s = pd.Series(data)
print("Original Series:")
print(s)
# Reorder categories
s = s.cat.set_categories(['high', 'medium', 'low'], ordered=True)
print("\nSeries after reordering categories:")
print(s)
While executing the above code we get the following output −
Original Series: 0 low 1 medium 2 high dtype: category Categories (3, object): ['low' < 'medium' < 'high'] Series after reordering categories: 0 low 1 medium 2 high dtype: category Categories (3, object): ['high' < 'medium' < 'low']
Example: Adding and Removing Categories Simultaneously
The following example demonstrates how to update categories by removing "cat" and adding "fish" and "rabbit" simultaneously using the set_categories( method.
import pandas as pd
# Creating a categorical Series
s = pd.Series(pd.Categorical(['cat', 'dog', 'bird'], categories=['cat', 'dog', 'bird']))
print("Original Series:")
print(s)
# Updating categories
s = s.cat.set_categories(['fish', 'dog', 'bird', 'rabbit'])
print("\nSeries after adding and removing categories:")
print(s)
Following is an output of the above code −
Original Series: 0 cat 1 dog 2 bird dtype: category Categories (3, object): ['cat', 'dog', 'bird'] Series after adding and removing categories: 0 NaN 1 dog 2 bird dtype: category Categories (4, object): ['fish', 'dog', 'bird', 'rabbit']
Example: Using set_categories() with CategoricalIndex
This example uses the set_categories() method with a CategoricalIndex object. It works the same as the Categorical Series, but the difference lies in how it is called.
import pandas as pd
# Create a CategoricalIndex
cat_index = pd.CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=True)
print("Original CategoricalIndex:")
print(cat_index)
# Rename categories
cat_index = cat_index.set_categories(['X', 'Y', 'Z'], rename=True)
print("\nCategoricalIndex after renaming categories:")
print(cat_index)
# Add a new category and reorder
cat_index = cat_index.set_categories(['Z', 'Y', 'X', 'W'], ordered=True)
print("\nCategoricalIndex after adding and reordering categories:")
print(cat_index)
Following is an output of the above code −
Original CategoricalIndex: CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=True, dtype='category') CategoricalIndex after renaming categories: CategoricalIndex(['X', 'Y', 'Z'], categories=['X', 'Y', 'Z'], ordered=True, dtype='category') CategoricalIndex after adding and reordering categories: CategoricalIndex(['X', 'Y', 'Z'], categories=['Z', 'Y', 'X', 'W'], ordered=True, dtype='category')