- Python Pandas - Home
- Python Pandas - Introduction
- Python Pandas - Environment Setup
- Python Pandas - Basics
- Python Pandas - Introduction to Data Structures
- Python Pandas - Index Objects
- Python Pandas - Panel
- Python Pandas - Basic Functionality
- Python Pandas - Indexing & Selecting Data
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - Slicing a Series Object
- Python Pandas - Attributes of a Series Object
- Python Pandas - Arithmetic Operations on Series Object
- Python Pandas - Converting Series to Other Objects
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - Accessing DataFrame
- Python Pandas - Slicing a DataFrame Object
- Python Pandas - Modifying DataFrame
- Python Pandas - Removing Rows from a DataFrame
- Python Pandas - Arithmetic Operations on DataFrame
- Python Pandas - IO Tools
- Python Pandas - IO Tools
- Python Pandas - Working with CSV Format
- Python Pandas - Reading & Writing JSON Files
- Python Pandas - Reading Data from an Excel File
- Python Pandas - Writing Data to Excel Files
- Python Pandas - Working with HTML Data
- Python Pandas - Clipboard
- Python Pandas - Working with HDF5 Format
- Python Pandas - Comparison with SQL
- Python Pandas - Data Handling
- Python Pandas - Sorting
- Python Pandas - Reindexing
- Python Pandas - Iteration
- Python Pandas - Concatenation
- Python Pandas - Statistical Functions
- Python Pandas - Descriptive Statistics
- Python Pandas - Working with Text Data
- Python Pandas - Function Application
- Python Pandas - Options & Customization
- Python Pandas - Window Functions
- Python Pandas - Aggregations
- Python Pandas - Merging/Joining
- Python Pandas - MultiIndex
- Python Pandas - Basics of MultiIndex
- Python Pandas - Indexing with MultiIndex
- Python Pandas - Advanced Reindexing with MultiIndex
- Python Pandas - Renaming MultiIndex Labels
- Python Pandas - Sorting a MultiIndex
- Python Pandas - Binary Operations
- Python Pandas - Binary Comparison Operations
- Python Pandas - Boolean Indexing
- Python Pandas - Boolean Masking
- Python Pandas - Data Reshaping & Pivoting
- Python Pandas - Pivoting
- Python Pandas - Stacking & Unstacking
- Python Pandas - Melting
- Python Pandas - Computing Dummy Variables
- Python Pandas - Categorical Data
- Python Pandas - Categorical Data
- Python Pandas - Ordering & Sorting Categorical Data
- Python Pandas - Comparing Categorical Data
- Python Pandas - Handling Missing Data
- Python Pandas - Missing Data
- Python Pandas - Filling Missing Data
- Python Pandas - Interpolation of Missing Values
- Python Pandas - Dropping Missing Data
- Python Pandas - Calculations with Missing Data
- Python Pandas - Handling Duplicates
- Python Pandas - Duplicated Data
- Python Pandas - Counting & Retrieving Unique Elements
- Python Pandas - Duplicated Labels
- Python Pandas - Grouping & Aggregation
- Python Pandas - GroupBy
- Python Pandas - Time-series Data
- Python Pandas - Date Functionality
- Python Pandas - Timedelta
- Python Pandas - Sparse Data Structures
- Python Pandas - Sparse Data
- Python Pandas - Visualization
- Python Pandas - Visualization
- Python Pandas - Additional Concepts
- Python Pandas - Caveats & Gotchas
Python Pandas read_feather() Method
The read_feather() method in Python's Pandas library allows you to read/load the feather-format object from the file path into a Pandas object, enabling fast and efficient data retrieval.
The Feather file format is a portable file format for saving and retrieving the DataFrame. It is a fast and language-independent binary file format designed for efficient data interchange between data analysis languages. It is supported by both Python and R languages, ensuring easy data sharing, fast reading and writing capabilities with less memory usage.
Before using the read_feather() method, please ensure that the 'pyarrow' library is installed, as it is an optional dependency. We need to install it by using the following command −
pip install pyarrow
Syntax
Following is the syntax of the Python Pandas read_feather() method −
pandas.read_feather(path, columns=None, use_threads=True, storage_options=None, dtype_backend=<no_default>)
Parameters
The Python Pandas read_feather() method accepts the below parameters −
path: This method accepts a string, path object, or file-like object that specifies the file path. It can be a local file path or a remote URL supporting schemes like http, ftp, s3, and file. For local files, the expected format is file://localhost/path/to/file.feather.
columns: Specifies which columns to read. If not provided, all columns are read.
use_threads: Specifies whether to parallelize reading using multiple threads.
storage_options: Additional options for storage connections, such as host, port, username, password, etc.
dtype_backend: Specifies the data type backend for the resulting DataFrame.
Return Value
The Pandas read_feather() method returns the same type of Pandas object that was stored in the feather format file.
Example: Loading a Feather File into Pandas Object
Here is a basic example demonstrating loading a Pandas DataFrame object from a feather file using the Pandas read_feather() method.
import pandas as pd
# Create a DataFrame
df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)})
print("Original DataFrame:")
print(df)
# Save the DataFrame as a feather file
df.to_feather("df_feather_file.feather")
# Load the DataFrame from the feather file
result = pd.read_feather("df_feather_file.feather")
print("DataFrame Loaded from Feather File:")
print(result)
When we run above program, it produces following result −
Original DataFrame:
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 0 | 5 |
| 1 | 1 | 6 |
| 2 | 2 | 7 |
| 3 | 3 | 8 |
| 4 | 4 | 9 |
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 0 | 5 |
| 1 | 1 | 6 |
| 2 | 2 | 7 |
| 3 | 3 | 8 |
| 4 | 4 | 9 |
Example: Reading Selected Columns from a Feather File
This example loads the Pandas DataFrame with the selected columns from a feather file using the Pandas read_feather() method.
import pandas as pd
# Create a DataFrame
df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)})
print("Original DataFrame:")
print(df)
# Save the DataFrame as a feather file
df.to_feather("df_feather_file.feather")
# Read only specific columns
df = pd.read_feather('df_feather_file.feather', columns=['Col_1'])
print("DataFrame with Selected Column:")
print(df)
While executing the above code we get the following output −
Original DataFrame:
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 0 | 5 |
| 1 | 1 | 6 |
| 2 | 2 | 7 |
| 3 | 3 | 8 |
| 4 | 4 | 9 |
| Col_1 | |
|---|---|
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
Example: Loading a feather File with Compression
The following example initially saves a compressed feather file and then loads it using the read_feather() method to read the compressed feather file back into the Pandas object.
import pandas as pd
# Create a DataFrame
df = pd.DataFrame({"Col_1": range(5), "Col_2": range(5, 10)})
print("Original DataFrame:")
print(df)
# Save the DataFrame to a feather file with compression
df.to_feather('compressed_data.feather', compression='zstd')
print("DataFrame saved with compression..")
# Load the compressed file
compressed_df = pd.read_feather("compressed_data.feather")
print("\nLoaded Compressed DataFrame:")
print(compressed_df)
Following is an output of the above code −
Original DataFrame:
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 0 | 5 |
| 1 | 1 | 6 |
| 2 | 2 | 7 |
| 3 | 3 | 8 |
| 4 | 4 | 9 |
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 0 | 5 |
| 1 | 1 | 6 |
| 2 | 2 | 7 |
| 3 | 3 | 8 |
| 4 | 4 | 9 |
Example: Reading from an In-Memory Feather File
The read_feather() method can also read the In-Memory feather file. Here is an example demonstrates the same.
import pandas as pd
import io
# Create a Pandas DataFrame
df = pd.DataFrame(data={'Col_1': [1, 2], 'Col_2': [3.0, 4.0]})
# Display the Input DataFrame
print("Original DataFrame:")
print(df)
# Save the DataFrame as In-Memory feather
buf = io.BytesIO()
df.to_feather(buf)
# Read the DataFrame from the in-memory buffer
loaded_df = pd.read_feather(buf)
print("DataFrame Loaded from In-Memory Feather:")
print(loaded_df)
Following is an output of the above code −
Original DataFrame:
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 1 | 3.0 |
| 1 | 2 | 4.0 |
| Col_1 | Col_2 | |
|---|---|---|
| 0 | 1 | 3.0 |
| 1 | 2 | 4.0 |