- Python Data Structure and Algorithms Tutorial
- Python - DS Home
- Python - DS Introduction
- Python - DS Environment
- Python - Arrays
- Python - Lists
- Python - Tuples
- Python - Dictionary
- Python - 2-D Array
- Python - Matrix
- Python - Sets
- Python - Maps
- Python - Linked Lists
- Python - Stack
- Python - Queue
- Python - Dequeue
- Python - Advanced Linked list
- Python - Hash Table
- Python - Binary Tree
- Python - Search Tree
- Python - Heaps
- Python - Graphs
- Python - Algorithm Design
- Python - Divide and Conquer
- Python - Recursion
- Python - Backtracking
- Python - Sorting Algorithms
- Python - Searching Algorithms
- Python - Graph Algorithms
- Python - Algorithm Analysis
- Python - Big-O Notation
- Python - Algorithm Classes
- Python - Amortized Analysis
- Python - Algorithm Justifications

- Python Data Structure & Algorithms Useful Resources
- Python - Quick Guide
- Python - Useful Resources
- Python - Discussion

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Python - Sorting Algorithms

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange data in a particular order. Most common orders are in numerical or lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very high level, if data is stored in a sorted manner. Sorting is also used to represent data in more readable formats. Below we see five such implementations of sorting in python.

Bubble Sort

Merge Sort

Insertion Sort

Shell Sort

Selection Sort

## Bubble Sort

It is a comparison-based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order.

### Example

def bubblesort(list): # Swap the elements to arrange in order for iter_num in range(len(list)-1,0,-1): for idx in range(iter_num): if list[idx]>list[idx+1]: temp = list[idx] list[idx] = list[idx+1] list[idx+1] = temp list = [19,2,31,45,6,11,121,27] bubblesort(list) print(list)

### Output

When the above code is executed, it produces the following result −

[2, 6, 11, 19, 27, 31, 45, 121]

## Merge Sort

Merge sort first divides the array into equal halves and then combines them in a sorted manner.

### Example

def merge_sort(unsorted_list): if len(unsorted_list) <= 1: return unsorted_list # Find the middle point and devide it middle = len(unsorted_list) // 2 left_list = unsorted_list[:middle] right_list = unsorted_list[middle:] left_list = merge_sort(left_list) right_list = merge_sort(right_list) return list(merge(left_list, right_list)) # Merge the sorted halves def merge(left_half,right_half): res = [] while len(left_half) != 0 and len(right_half) != 0: if left_half[0] < right_half[0]: res.append(left_half[0]) left_half.remove(left_half[0]) else: res.append(right_half[0]) right_half.remove(right_half[0]) if len(left_half) == 0: res = res + right_half else: res = res + left_half return res unsorted_list = [64, 34, 25, 12, 22, 11, 90] print(merge_sort(unsorted_list))

### Output

When the above code is executed, it produces the following result −

[11, 12, 22, 25, 34, 64, 90]

## Insertion Sort

Insertion sort involves finding the right place for a given element in a sorted list. So in beginning we compare the first two elements and sort them by comparing them. Then we pick the third element and find its proper position among the previous two sorted elements. This way we gradually go on adding more elements to the already sorted list by putting them in their proper position.

### Example

def insertion_sort(InputList): for i in range(1, len(InputList)): j = i-1 nxt_element = InputList[i] # Compare the current element with next one while (InputList[j] > nxt_element) and (j >= 0): InputList[j+1] = InputList[j] j=j-1 InputList[j+1] = nxt_element list = [19,2,31,45,30,11,121,27] insertion_sort(list) print(list)

### Output

When the above code is executed, it produces the following result −

[2, 11, 19, 27, 30, 31, 45, 121]

## Shell Sort

Shell Sort involves sorting elements which are away from each other. We sort a large sublist of a given list and go on reducing the size of the list until all elements are sorted. The below program finds the gap by equating it to half of the length of the list size and then starts sorting all elements in it. Then we keep resetting the gap until the entire list is sorted.

### Example

def shellSort(input_list): gap = len(input_list) // 2 while gap > 0: for i in range(gap, len(input_list)): temp = input_list[i] j = i # Sort the sub list for this gap while j >= gap and input_list[j - gap] > temp: input_list[j] = input_list[j - gap] j = j-gap input_list[j] = temp # Reduce the gap for the next element gap = gap//2 list = [19,2,31,45,30,11,121,27] shellSort(list) print(list)

### Output

When the above code is executed, it produces the following result −

[2, 11, 19, 27, 30, 31, 45, 121]

## Selection Sort

In selection sort we start by finding the minimum value in a given list and move it to a sorted list. Then we repeat the process for each of the remaining elements in the unsorted list. The next element entering the sorted list is compared with the existing elements and placed at its correct position.So, at the end all the elements from the unsorted list are sorted.

### Example

def selection_sort(input_list): for idx in range(len(input_list)): min_idx = idx for j in range( idx +1, len(input_list)): if input_list[min_idx] > input_list[j]: min_idx = j # Swap the minimum value with the compared value input_list[idx], input_list[min_idx] = input_list[min_idx], input_list[idx] l = [19,2,31,45,30,11,121,27] selection_sort(l) print(l)

### Output

When the above code is executed, it produces the following result −

[2, 11, 19, 27, 30, 31, 45, 121]