Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python – scipy.linalg.norm
The norm() function of the scipy.linalg package is used to return one of eight different matrix norms or one of an infinite number of vector norms.
Syntax
scipy.linalg.norm(x)
Where x is an input array or a square matrix.
Example 1
Let us consider the following example −
# Importing the required libraries from scipy
from scipy import linalg
import numpy as np
# Define the input array
x = np.array([7 , 4])
print("Input array:
", x)
# Calculate the L2 norm
r = linalg.norm(x)
# Calculate the L1 norm
s = linalg.norm(x, 3)
# Display the norm values
print("Norm Value of r :", r)
print("Norm Value of s :", s)
Output
The above program will generate the following output −
Input array: [7 4] Norm Value of r : 8.06225774829855 Norm Value of s : 7.410795055420619
Example 2
Let us take another example −
# Importing the required libraries from scipy
from scipy import linalg
import numpy as np
# Define the input array
x = np.array([[ 6, 7, 8], [9, -1, -2]])
print("Input Array :
", x)
# Calculate the L2 norm
p = linalg.norm(x)
# Calculate the L1 norm
q = linalg.norm(x, axis=1)
# Display the norm values
print("Norm Values of P :", p)
print("Norm Values of Q :", q)
Output
It will produce the following output −
Input Array : [[ 6 7 8] [ 9 -1 -2]] Norm Values of P : 15.329709716755891 Norm Values of Q : [12.20655562 9.2736185 ]
Advertisements