Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the equalities of regular expressions by applying properties?
Problem
Prove each of the following equalities of regular expressions.
a. ab*a(a + bb*a)*b = a(b + aa*b)*aa*b.
b. b + ab* + aa*b + aa*ab* = a*(b + ab*).
Solution
Problem 1
Prove that ab*a(a + bb*a)*b = a(b + aa*b)*aa*b.
Let’s take LHS ,
= ab*a(a + bb*a)*b
Use property of (a+b)* = a*(ba*)*
= ab*a (a* ((bb*a) a* )* a*b
= ab* a (a*bb*a)* a*b {Associative property}
= ab* (a (a*bb*a)*)a*b
= ab*(aa*bb*)*aa*b
= a (b*(aa*bb*)*)aa*b
Use property a* (ba*)*= (a+b)*
= a(b+aa*b)*aa*b
= RHS
Hence proved
Problem 2
Prove that b + ab* + aa*b + aa*ab* = a*(b + ab*).
Let’s take LHS,
= b + ab* + aa*b + aa*ab*
= (b+aa*b)+(ab*+aa*ab*)
= (^+aa*)b+(^+aa*)ab* {using distributing property}
= (a*)b+(a*)ab* from ^+aa*=a*
= a*b+a*ab*
= a*(b+ab*) {distributive property}
= RHS
Hence provedAdvertisements