
- Properties of Real Numbers
- Home
- Identifying Like Terms
- Combining like terms: Whole number coefficients
- Introduction to properties of addition
- Multiplying a constant and a linear monomial
- Distributive property: Whole Number coefficients
- Factoring a linear binomial
- Identifying parts in an algebraic expression
- Identifying equivalent algebraic expressions
- Introduction to properties of multiplication
Multiplying a constant and a linear monomial Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Multiplying a constant and a linear monomial. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Answer : A
Explanation
Step 1:
Simplifying
6 × 8x = 48x
Step 2:
So, 6 × 8x = 48x
Answer : C
Explanation
Step 1:
Simplifying
−12 × 9y = −108y
Step 2:
So, −12 × 9y = −108y
Answer : B
Explanation
Step 1:
Simplifying
7 × 13z = 91z
Step 2:
So, 7 × 13z = 91z
Answer : D
Explanation
Step 1:
Simplifying
$\left ( \frac{1}{5} \right) \times 9p = \left ( \frac{9p}{5} \right)$
Step 2:
So, $\left ( \frac{1}{5} \right) \times 9p = \left ( \frac{9p}{5} \right)$
Answer : C
Explanation
Step 1:
Simplifying
$\left ( \frac{−4}{11} \right) \times 9m = \left ( \frac{−36m}{11} \right)$
Step 2:
So, $\left ( \frac{−4}{11} \right) \times 9m = \left ( \frac{−36m}{11} \right)$
Answer : B
Explanation
Step 1:
Simplifying
−5 × (14n) = −70n
Step 2:
So, −5 × (14n) = −70n
Answer : A
Explanation
Step 1:
Simplifying
$\left ( \frac{8}{3} \right ) \times \left ( \frac{3p}{4} \right ) = 2p$
Step 2:
So, $\left ( \frac{8}{3} \right ) \times \left ( \frac{3p}{4} \right ) = 2p$
Answer : D
Explanation
Step 1:
Simplifying
$5 \times \left ( \frac{−4y}{15} \right ) = \left ( \frac{−4y}{3} \right )$
Step 2:
So, $5 \times \left ( \frac{−4y}{15} \right ) = \left ( \frac{−4y}{3} \right )$
Answer : A
Explanation
Step 1:
Simplifying
$8 \times \left ( \frac{7x}{3} \right ) = \left ( \frac{56x}{3} \right )$
Step 2:
So, $8 \times \left ( \frac{7x}{3} \right ) = \left ( \frac{56x}{3} \right )$
Answer : B
Explanation
Step 1:
Simplifying
$\left ( \frac{-9}{15} \right ) \times (3z) = \left ( \frac{-9z}{5} \right )$
Step 2:
So, $\left ( \frac{-9}{15} \right ) \times (3z) = \left ( \frac{-9z}{5} \right )$