Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Program to print binomial expansion series
Binomial expansion is a mathematical formula used to expand the expressions of the form (a+b)^n, where n is a positive integer and a and b can be any real or complex numbers. The expansion gives the coefficients of the terms in the expansion.
A binomial expansion can be represented as
$$\mathrm{(a+b)^n= ^nC_0a^nb^0+ ^nC_1a^{n-1}b^1 + ^nCa^{n-2}b^2+...+ ^nC_ra^{n-r}b^r+...+ ^nC_na^0b^n}$$
where $\mathrm{^nC_r}$ are the binomial coefficients and is given by
$\mathrm{^nC_r=\frac{n!}{r!\times(n?r)!}}$ where n! is the factorial of n
The expansion can be used for calculating all the binomial terms using the formula above and putting it into the expansion equation.
Problem Statement
Given three integers a, b and n. Find the terms of the binomial expansion of (a+b)^n.
Sample Example 1
Input ?
a = 1, b = 2, n = 3
Output ?
[1, 6, 12, 8]
Explanation
Binomial expansion of (1+2)^3 is as follows
$\mathrm{(1+2)^3 = C(3,0)a^3b^0 + C(3,1)a^2b^1 + C(3,2)a^1b^2 + C(3,3)a^0b^3}$
= 1*1*1 + 3*1*2 + 3*1*4 + 1*1*8
Thus, [1, 6, 12, 8] are the terms of the binomial expansion.
Sample Example 2
Input ?
a = 7, b = 2, n = 11
Output ?
[2401, 2744, 1176, 224, 16]
Approach 1: Recursion Binomial Expansion
Using the binomial expansion formula,
$$\mathrm{(a+b)^n= ^nC_0a^nb^0+ ^nC_1a^{n-1}b^1 + ^nCa^{n-2}b^2+...+ ^nC_ra^{n-r}b^r+...+ ^nC_na^0b^n}$$
We can find the value of each term by recursively calculating the binomial coefficients.
Pseudocode
procedure binomialCoeff (n, r)
if r == 0 or r == n
ans = 1
else
ans = binomialCoeff (n - 1, r - 1) + binomialCoeff (n - 1, r)
end procedure
procedure binomialTerms (a, b, n)
Initialize vector: arr
for r = 0 to n
coeff = binomialCoeff(n, r)
term = coeff + a^n-r + b^r
add the term to arr
ans = arr
end procedure
Example: C++ Implementation,
In the following program, binomialCoeff() function recursively calculates the value of rth binomial coefficient and the binomialTerms() function calculates the value of binomial terms in the expansion.
#include <bits/stdc++.h>
using namespace std;
// Function for calculating binomial coefficients
int binomialCoeff(int n, int r){
if (r == 0 || r == n) {
return 1;
} else {
return binomialCoeff(n - 1, r - 1) + binomialCoeff(n - 1, r);
}
}
// Function for calculating the binomial terms
vector<int> binomialTerms(int a, int b, int n){
vector<int> ans;
for (int r = 0; r <= n; r++) {
// Calculate the rth binomial coefficients
int coeff = binomialCoeff(n, r);
// Calculate the rth binomial expansion term
int term = coeff * pow(a, n - r) * pow(b, r);
ans.push_back(term);
}
return ans;
}
int main(){
int a = 2, b = 3, n = 4;
vector<int> res = binomialTerms(a, b, n);
cout << "The binomial terms are : ";
for (int i = 0; i < res.size(); i++) {
cout << res[i] << " ";
}
return 0;
}
Output
The binomial terms are : 16 96 216 216 81
Time Complexity ? O(2^n) where the time complexity of binomialCoeff() function is O(2^n) due to 2^n nodes in the recursive tree and the binomialTerms() function has a complexity of O(n^2) due to nested loop calling binomialCoeff() n+1 times. Thus overall complexity is O(2^n).
Space Complexity ? O(n) due to the recursive call stack.
Approach 2: Iterative Binomial Expansion
Using the binomial expansion formula,
$$\mathrm{(a+b)^n= ^nC_0a^nb^0+ ^nC_1a^{n-1}b^1 + ^nCa^{n-2}b^2+...+ ^nC_ra^{n-r}b^r+...+ ^nC_na^0b^n}$$
We can find the value of each term of this expansion by combining iterations and divisions.
We'll create 2 functions, where the first function calculates the binomial coefficients and the second function multiplies the powers of a and b to get the desired binomial terms.
Pseudocode
procedure binomialCoeff (n, r)
res = 1
if r > n - r
r = n - r
end if
for i = 0 to r-1
res = res * (n - i)
res = res / (i + 1)
ans = res
end procedure
procedure binomialTerms (a, b, n)
Initialize vector: arr
for r = 0 to n
coeff = binomialCoeff(n, r)
term = coeff + a^n-r + b^r
add the term to arr
ans = arr
end procedure
Example: C++ Implementation
In the following program, the binomialCoeff() function calculates the rth binomial coefficient and the binomialTerms() function calculates all the terms of the binomial expansion of given a, b and n.
#include <bits/stdc++.h>
using namespace std;
// Function for calculating binomial coefficients
int binomialCoeff(int n, int r){
int res = 1;
if (r > n - r) {
r = n - r;
}
for (int i = 0; i < r; i++) {
res *= (n - i);
res /= (i + 1);
}
return res;
}
// Function for calculating the binomial terms
vector<int> binomialTerms(int a, int b, int n){
vector<int> ans;
for (int r = 0; r <= n; r++){
// Calculate the rth binomial coefficients
int coeff = binomialCoeff(n, r);
// Calculate the rth binomial expansion term
int term = coeff * pow(a, n - r) * pow(b, r);
ans.push_back(term);
}
return ans;
}
int main(){
int a = 2, b = 3, n = 4;
vector<int> res = binomialTerms(a, b, n);
cout << "The binomial terms are : ";
for (int i = 0; i < res.size(); i++){
cout << res[i] << " ";
}
return 0;
}
Output
The binomial terms are : 16 96 216 216 81
Time Complexity ? O(n^2), where binomialCoeff() function has the time complexity of O(r) where r is teh smaller number among r and n-r and the binomialTerms() function has a complexity of O(n^2) due to nested loop calling binomialCoeff() n+1 times. Thus overall complexity is O(n^2).
Space Complexity ? O(n) due to the vector storing the binomial terms.
Conclusion
In conclusion, to find the binomial terms of a binomial expansion, we can implement either of the two above-mentioned approaches with time complexities ranging from O(2^n) to O(n^2) where the iterative approach is more optimized than the recursive approach.