Program to count number of queries that are true in a graph with weighted path in C++

C++Server Side ProgrammingProgramming

Suppose we have an edge list for an undirected graph where each edge has [u, v, w] fields, u and v are source and destination vertices and w is the weight. And also have a list of queries of the same form [u, v, w]. That represents the question of does there exist a path between u and v such that each edge in the path have weight of at most w. So find the number of queries that are true.

So, if the input is like edges = [[0, 1, 6],[1, 2, 7],[2, 3, 8],[0, 3, 5]] queries = [[0, 2, 14],[1, 0, 3]]

then the output will be 1, as we can go from node 0 to 2 by following this path [0, 1, 2] with weight 13. But there is no path from 1 to 0 with edge weight 3.

To solve this, we will follow these steps −

  • Define a function get_parent(), this will take x, an array par,
  • if par[x] is not x, then
    • par[x] := get_parent(par[x], par)
  • return par[x]
  • From the main method do the following −
  • Define one 2D array gr
  • n := 0
  • for each edge t in edges −
    • n := maximum of n, t[0] and t[1]
    • insert a row [t[2], 0, t[0], t[1]] into gr
  • for each query t in queries −
    • insert a row [t[2], 1, t[0], t[1]] into gr
  • sort gr
  • Define an array par of size n + 1 and fill with -1
  • for initialize i := 0, when i <= n, update (increase i by 1), do −
    • par[i] := i
  • sz := size of queries
  • ans := 0
  • for each row t in gr
    • a := t[2], b := t[3], tp := t[1], d := t[0]
    • px := get_parent(a, par)
    • py := get_parent(b, par)
    • if tp is same as 0, then −
      • if px is not equal to py, then −
        • par[py] := px
    • Otherwise
      • if px is same as py, then −
        • (increase ans by 1)
      • (decrease sz by 1)
      • if sz is same as 0, then −
        • Come out from the loop
  • return ans

Example (C++)

Let us see the following implementation to get better understanding −

 Live Demo

#include <bits/stdc++.h>
using namespace std;
int get_parent(int x, vector<int>& par) {
   if (par[x] != x) {
      par[x] = get_parent(par[x], par);
   }
   return par[x];
}
int solve(vector<vector<int>>& edges, vector<vector<int>>& queries) {
   vector<vector<int>> gr;
   int n = 0;
   for (auto t : edges) {
      n = max(n, max(t[0], t[1]));
      gr.push_back({t[2], 0, t[0], t[1]});
   }
   for (auto t : queries) {
      gr.push_back({t[2], 1, t[0], t[1]});
   }
   sort(gr.begin(), gr.end());
   vector<int> par(n + 1, -1);
   for (int i = 0; i <= n; i++) {
      par[i] = i;
   }
   int sz = queries.size();
   int ans = 0;
   for (auto t : gr) {
      int a = t[2];
      int b = t[3];
      int tp = t[1];
      int d = t[0];
      int px = get_parent(a, par);
      int py = get_parent(b, par);
      if (tp == 0) {
         if (px != py) {
            par[py] = px;
         }
      }else {
         if (px == py) {
            ans++;
         }
         sz--;
         if(sz == 0) {
            break;
         }
      }
   }
   return ans;
}
int main(){
   vector<vector<int>> edges = {{0, 1, 6},{1, 2, 7},{2, 3, 8},{0, 3, 5}};
   vector<vector<int>> queries = {{0, 2, 14},{1, 0, 3}};
   cout << solve(edges, queries);
}

Input

{{0, 1, 6},{1, 2, 7},{2, 3, 8},{0, 3, 5}}, {{0, 2, 14},{1, 0, 3}}

Output

1
raja
Updated on 12-Dec-2020 09:35:09

Advertisements