$ \mathrm{AD} $ is an altitude of an isosceles triangle $ \mathrm{ABC} $ in which $ \mathrm{AB}=\mathrm{AC} $. Show that(i) ADbisects BC(ii) $ \mathrm{AD} $ bisects $ \angle \mathrm{A} $.
Given:
$AD$ is an altitude of an isosceles triangle $ABC$ in which $AB=AC$.
To do:
We have to show that: (i) $AD$ bisects $BC$ (ii) $AD$ bisects $\angle A$.
Solution:
Let us consider $\triangle ABD$ and $ACD$
Given, that $AD$ is the altitude of $\triangle ABD$ and $ACD$
We get, $\angle ADB=\angle ADC=90^o$
We have, $AB=AC$
Since $AD$ is the common side we get,
$AD=DA$
Therefore,
We know that According to the RHS rule if the hypotenuse and one side of a right-angled triangle are equal to the corresponding hypotenuse and one side of another right-angled triangle; then both the right-angled triangle are said to be congruent.
Therefore,
$\triangle ABD \cong \triangle ACD$
We also know that,
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding sides must be equal.
Therefore,
$BD=CD$
Hence, $AD$ bisects $BC$.
(ii) Again from CPCT,
We also know
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding angles must be equal.
Hence,
$AD$ bisects $\angle A$.
Related Articles In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is the perpendicular bisector of \( \mathrm{BC} \) (see Fig. 7.30). Show that \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \)."\n
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
\( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that(i)$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors of \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \) intersect each other at \( O \). Join \( A \) to \( O \). Show that :(i) \( \mathrm{OB}=\mathrm{OC} \)(ii) \( \mathrm{AO} \) bisects \( \angle \mathrm{A} \)
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
\( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (see Fig. 7.18). Show that \( \mathrm{CD} \) bisects \( \mathrm{AB} \)."\n
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
Kickstart Your Career
Get certified by completing the course
Get Started