- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the figure, $AB \parallel CD \parallel EF$ and $GH \parallel KL$. Find $\angle HKL$.
"
Given:
$AB \parallel CD \parallel EF$ and $GH \parallel KL$.To do:
We have to find $\angle HKL$.
Solution:
Produce $LK$ and $GH$
$AB \parallel CD$ and $HK$ is the transversal.
This implies,
$\angle 1 = 25^o$ (Alternate angles)
$\angle 3 = 60^o$ (Corresponding angles)
$\angle 4 = \angle 3 = 60^o$ (Corresponding angles)
$\angle 4 + \angle 5 = 180^o$ (Linear pair)
$60^o + \angle 5 = 180^o$
$\angle 5 = 180^o - 60^o$
$\angle 5 = 120^o$
Therefore,
$\angle HKL = \angle 1 + \angle 5$
$ = 25^o + 120^o$
$ = 145^o$
Hence, $\angle HKL = 145^o$.
Advertisements