$BM$ and $CN$ are perpendiculars to a line passing, through the vertex $A$ of a triangle $ABC$. If $L$ is the mid-point of $BC$, prove that $LM = LN$.


Given:

$BM$ and $CN$ are perpendiculars to a line passing, through the vertex $A$ of a triangle $ABC$.

$L$ is the mid-point of $BC$.

To do:

We have to prove that $LM = LN$.

Solution:

Join $ML$ and $NL$.


In $\triangle BMP$ and $\Delta CNP$,

$\angle \mathrm{M}=\angle \mathrm{N}$

$\angle \mathrm{BPM}=\angle \mathrm{CPN}$           (Vertically opposite angles)

Therefore, by AA similarity,

$\Delta \mathrm{BMP} \sim \Delta \mathrm{CNP}$

This implies,

$\frac{\mathrm{BM}}{\mathrm{CN}}=\frac{\mathrm{PM}}{\mathrm{PN}}$

In $\triangle \mathrm{BML}$ and $\Delta \mathrm{LNC}$,

$\frac{\mathrm{BM}}{\mathrm{CN}}=\frac{\mathrm{PM}}{\mathrm{PN}}$

$\angle \mathrm{B}=\angle \mathrm{C}$          (Alternate angles)

$\triangle \mathrm{BML} \sim \Delta \mathrm{LMC}$

This implies,

$\frac{\mathrm{ML}}{\mathrm{LN}}=\frac{\mathrm{BL}}{\mathrm{LC}}$

$\mathrm{BL}=\mathrm{LC}$

This implies,

$\frac{\mathrm{BL}}{\mathrm{LC}}=1$

$\frac{\mathrm{ML}}{\mathrm{LN}}=1$

$\mathrm{ML}=\mathrm{LN}$

Hence proved.

Updated on: 10-Oct-2022

20 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements