$ABCD$ is a parallelogram. $E$ is a point on $BA$ such that $BE = 2EA$ and $F$ is a point on $DC$ such that $DF = 2FC$. Prove that $AECF$ is a parallelogram whose area is one third of the area of parallelogram $ABCD$.


Given:

$ABCD$ is a parallelogram. $E$ is a point on $BA$ such that $BE = 2EA$ and $F$ is a point on $DC$ such that $DF = 2FC$.

To do:

We have to prove that $AECF$ is a parallelogram whose area is one-third of the area of parallelogram $ABCD$.

Solution:

Join $AE$ and $CE$.


In parallelogram $\mathrm{ABCD}$,

$\mathrm{AE}=2 \mathrm{EB}$ and $\mathrm{DF}=2 \mathrm{FC}$

$\Rightarrow \mathrm{AE}=\frac{1}{3} \mathrm{AB}$

$\mathrm{CF}=\frac{1}{3} \mathrm{CD}$

$\mathrm{AB}=\mathrm{CD}$                  (Opposite sides of a parallelogram)

This implies,

$\mathrm{AE}=\mathrm{FC}$

$\mathrm{AB} \| \mathrm{CD}$

Therefore, $AECF$ is a parallelogram.

Parallelogram $\mathrm{ABCD}$ and parallelogram $AECF$ have the same altitude and $\mathrm{AE}=\frac{1}{3} \mathrm{AB}$

Area of parallelogram $\mathrm{AECF})=\mathrm{AE} \times \text { Altitude }$

$=\frac{1}{3} \mathrm{AB} \times \text { Altitude }$

$=\frac{1}{3} a r(parallelogram \mathrm{ABCD})$.

Hence proved.

Updated on: 10-Oct-2022

29 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements