
- NumPy Tutorial
- NumPy - Home
- NumPy - Introduction
- NumPy - Environment
- NumPy - Ndarray Object
- NumPy - Data Types
- NumPy - Array Attributes
- NumPy - Array Creation Routines
- NumPy - Array from Existing Data
- Array From Numerical Ranges
- NumPy - Indexing & Slicing
- NumPy - Advanced Indexing
- NumPy - Broadcasting
- NumPy - Iterating Over Array
- NumPy - Array Manipulation
- NumPy - Binary Operators
- NumPy - String Functions
- NumPy - Mathematical Functions
- NumPy - Arithmetic Operations
- NumPy - Statistical Functions
- Sort, Search & Counting Functions
- NumPy - Byte Swapping
- NumPy - Copies & Views
- NumPy - Matrix Library
- NumPy - Linear Algebra
- NumPy - Matplotlib
- NumPy - Histogram Using Matplotlib
- NumPy - I/O with NumPy
- NumPy Useful Resources
- NumPy - Quick Guide
- NumPy - Useful Resources
- NumPy - Discussion
NumPy - bitwise_and
The bitwise AND operation on the corresponding bits of binary representations of integers in input arrays is computed by np.bitwise_and() function.
Example
import numpy as np print 'Binary equivalents of 13 and 17:' a,b = 13,17 print bin(a), bin(b) print '\n' print 'Bitwise AND of 13 and 17:' print np.bitwise_and(13, 17)
Its output is as follows −
Binary equivalents of 13 and 17: 0b1101 0b10001 Bitwise AND of 13 and 17: 1
You can verify the output as follows. Consider the following bitwise AND truth table.
A | B | AND |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
1 | 1 | 0 | 1 | ||
AND | |||||
1 | 0 | 0 | 0 | 1 | |
result | 0 | 0 | 0 | 0 | 1 |
numpy_binary_operators.htm
Advertisements