# Median in a stream of integers (running integers) in C++

## Problem statement

Given that integers are read from a data stream. Find median of elements read so for in an efficient way

After reading 1st element of stream - 10 -> median - 10

After reading 2nd element of stream - 10, 20 -> median - 15

After reading 3rd element of stream - 10, 20, 30 -> median - 20, so on...

## Algorithm

1. Use a max heap on left side to represent elements that are less than effective median,
and a min heap on right side to represent elements that are greater than effective median
2. After processing an incoming element, the number of elements in heaps differ utmost by 1 element
3. When both heaps contain same number of elements, we pick average of heaps root data as effective median
4. When the heaps are not balanced, we select effective median from the root of heap containing more elements

## Example

#include <iostream>
using namespace std;
#define MAX_HEAP_SIZE (128)
#define ARRAY_SIZE(a) sizeof(a)/sizeof(a[0])
inline void Exch(int &a, int &b){
int aux = a;
a = b;
b = aux;
}
bool Greater(int a, int b){
return a > b;
}
bool Smaller(int a, int b){
return a < b;
}
int Average(int a, int b){
return (a + b) / 2;
}
int Signum(int a, int b){
if( a == b ) {
return 0;
}
return a < b ? -1 : 1;
}
class Heap{
public:
Heap(int *b, bool (*c)(int, int)) : A(b), comp(c){
heapSize = -1;
}
virtual ~Heap(){
if( A ) {
delete[] A;
}
}
virtual bool Insert(int e) = 0;
virtual int GetTop() = 0;
virtual int ExtractTop() = 0;
virtual int GetCount() = 0;
protected:
int left(int i){
return 2 * i + 1;
}
int right(int i){
return 2 * (i + 1);
}
int parent(int i){
if( i <= 0 ) {
return -1;
}
return (i - 1)/2;
}
int *A;
bool (*comp)(int, int);
int heapSize;
int top(void){
int max = -1;
if( heapSize >= 0 ) {
max = A[0];
}
return max;
}
int count(){
return heapSize + 1;
}
void heapify(int i){
int p = parent(i);
if( p >= 0 && comp(A[i], A[p]) ) {
Exch(A[i], A[p]);
heapify(p);
}
}
int deleteTop(){
int del = -1;
if( heapSize > -1) {
del = A[0];
Exch(A[0], A[heapSize]);
heapSize--;
heapify(parent(heapSize+1));
}
return del;
}
bool insertHelper(int key){
bool ret = false;
if( heapSize < MAX_HEAP_SIZE ) {
ret = true;
heapSize++;
A[heapSize] = key;
heapify(heapSize);
}
return ret;
}
};
class MaxHeap : public Heap{
private:
public:
MaxHeap() : Heap(new int[MAX_HEAP_SIZE], &Greater) { }
~MaxHeap() { }
int GetTop(){
}
int ExtractTop(){
return deleteTop();
}
int GetCount(){
return count();
}
bool Insert(int key){
return insertHelper(key);
}
};
class MinHeap : public Heap{
private:
public:
MinHeap() : Heap(new int[MAX_HEAP_SIZE], &Smaller) { }
~MinHeap() { }
int GetTop(){
}
int ExtractTop(){
return deleteTop();
}
int GetCount(){
return count();
}
bool Insert(int key){
return insertHelper(key);
}
};
int getMedian(int e, int &m, Heap &l, Heap &r){
int sig = Signum(l.GetCount(), r.GetCount());
switch(sig){
case 1:
if( e < m ) {
r.Insert(l.ExtractTop());
l.Insert(e);
} else {
r.Insert(e);
}
m = Average(l.GetTop(), r.GetTop());
break;
case 0:
if( e < m ) {
l.Insert(e);
m = l.GetTop();
} else {
r.Insert(e);
m = r.GetTop();
}
break;
case -1:
if( e < m ) {
l.Insert(e);
} else {
l.Insert(r.ExtractTop());
r.Insert(e);
}
m = Average(l.GetTop(), r.GetTop());
break;
}
return m;
}
void printMedian(int A[], int size){
int m = 0;
Heap *left = new MaxHeap();
Heap *right = new MinHeap();
for(int i = 0; i < size; ++i) {
m = getMedian(A[i], m, *left, *right);
cout << m << endl;
}
delete left;
delete right;
}
// Driver code
int main(){
int A[] = {10, 20, 30};
int size = ARRAY_SIZE(A);
cout "Result:\n";
printMedian(A, size);
return 0;
}

## Output

When you compile and execute the above program. It generates the following output −

Result:
10
15
20