# Maximum path sum for each position with jumps under divisibility condition in C++

In this tutorial, we will be discussing a program to find maximum path sum for each position with jumps under divisibility condition

For this we will be provided with an array of n random integers. Our task is to jump from one position to another if it divides it and finally provide the maximum sum path for every given position.

## Example

Live Demo

#include <bits/stdc++.h>
using namespace std;
//finding maximum sum path
void printMaxSum(int arr[], int n) {
int dp[n];
memset(dp, 0, sizeof dp);
for (int i = 0; i < n; i++) {
dp[i] = arr[i];
int maxi = 0;
for (int j = 1; j <= sqrt(i + 1); j++) {
if (((i + 1) % j == 0) && (i + 1) != j) {
if (dp[j - 1] > maxi)
maxi = dp[j - 1];
if (dp[(i + 1) / j - 1] > maxi && j != 1)
maxi = dp[(i + 1) / j - 1];
}
}
dp[i] += maxi;
}
for (int i = 0; i < n; i++)
cout << dp[i] << " ";
}
int main() {
int arr[] = { 2, 3, 1, 4, 6, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
printMaxSum(arr, n);
return 0;
}

## Output

2 5 3 9 8 10