- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Mask columns of a 2D array that contain masked values in Numpy
To mask columns of a 2D array that contain masked values, use the np.ma.mask_cols() method in Numpy. A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Array Dimensions...
",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array −
print("
Our Masked Array Shape...
",maskArr.shape)
Get the number of elements of the Masked Array −
print("
Elements in the Masked Array...
",maskArr.size)
To mask columns of a 2D array that contain masked values, use the np.ma.mask_cols() method in Numpy −
print("
Result...
",np.ma.mask_cols(maskArr))
Example
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To mask columns of a 2D array that contain masked values, use the np.ma.mask_cols() method in Numpy print("
Result...
",np.ma.mask_cols(maskArr))
Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[-- -- 81] [-- -- 39] [-- -- 51] [-- -- 67]]
- Related Articles
- Mask rows and/or columns of a 2D array that contain masked values in Numpy
- Mask rows of a 2D array that contain masked values in Numpy
- Mask rows and/or columns of a 2D Numpy array that contain masked values along negative axis
- Mask rows and/or columns of a 2D array that contain masked values along axis 1 in Numpy
- Mask rows and/or columns of a 2D array that contain masked values along axis 0 in Numpy
- Suppress whole columns of a 2-D array that contain masked values in Numpy
- Suppress the rows and/or columns of a 2- D array that contain masked values in Numpy
- Suppress whole rows of a 2-D array that contain masked values in Numpy
- Suppress only columns that contain masked values using compress_rowcols() along specific axis in Numpy
- Suppress the rows and/or columns of a 2- D array that contain masked values along specific axis in Numpy
- Return the mask of a masked array in Numpy
- Return the mask of a masked array or full boolean array of False in Numpy
- Suppress only rows that contain masked values using compress_rowcols() along specific axis in Numpy
- Return the addresses of the data and mask areas of a masked array in Numpy
- Append values to the end of a masked array in Numpy
