# Longest Turbulent Subarray in C++

C++Server Side ProgrammingProgramming

Consider a subarray A[i], A[i+1], ..., A[j] of A is said to be turbulent when it meets these conditions −

• For i <= k < j and A[k] > A[k+1] when k is odd, and A[k] < A[k+1] when k is even;

• Otherwise, for i <= k < j, A[k] > A[k+1] when k is even, and A[k] < A[k+1] when k is odd.

So the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray. Now find the length of a maximum size turbulent subarray of A. So if the input is like [9,4,2,10,7,8,8,1,9], output is 5. This is because A > A < A > A < A

To solve this, we will follow these steps −

• n := size of array A

• prevBig := 1, prevSmall := 1, currBig := 1, currSmall := 1 and ret := 1

• for i in range 1 to n – 1

• if A[i] > A[i – 1], then currBig := 1 + prevSmall

• if A[i] < A[i – 1], then currSmall := 1 + prevBig

• ret := max of ret, currBig and currSmall

• prevSmall := currSmall, prevBig := currBig, currSmall := 1, currBig := 1

• return ret

Let us see the following implementation to get better understanding −

### Example

Live Demo

#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
int maxTurbulenceSize(vector<int>& A) {
int n = A.size();
int prevBig = 1;
int prevSmall = 1;
int currBig = 1;
int currSmall = 1;
int ret = 1;
for(int i = 1; i < n; i++){
if(A[i] > A[i - 1]){
currBig = 1 + prevSmall;
}
if(A[i] < A[i - 1]){
currSmall = 1 + prevBig;
}
ret = max({ret, currBig, currSmall});
prevSmall = currSmall;
prevBig = currBig;
currSmall = 1;
currBig = 1;
}
return ret;
}
};
main(){
vector<int> v1 = {9,4,2,10,7,8,8,1,9};
Solution ob;
cout << (ob.maxTurbulenceSize(v1));
}

### Input

[9,4,2,10,7,8,8,1,9]

## Output

5
Advertisements