- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
JavaScript Program to Check if it is possible to make array increasing or decreasing by rotating the array
Rotation of the array means to assume the array as a circular array and rotate the elements of the array to either their left or right direction by one index at each rotation and the element at one end may take the value present at another end. An Increasing array means that each element will be greater than or equal to its previous element and decreasing array means each element will be less than or equal to the previous element.
In this problem, we are given an array and we can rotate the array in either the left or the right direction and we have to find whether after certain rotations (possibly zero) can we make the array increasing or decreasing.
Naive Approach
In this approach we will rotate the array and for each rotation we will check whether the current array is increasing or decreasing.
Example
In the below example, we check if it is possible to make the given array increasing or decreasing by rotating it. Below are the inputs and expected outputs.
Input: arr = [3, 4, 5, 6, 1, 2]
Expected Output: Yes
Input: arr = [ 5, 1, 6, 2, 5, 3 ]
Expected Output: No
Example
// function to rotate the given array function rotate(arr){ var l = 0; var r = arr.length-1; while(l < r){ arr[l] += arr[r]; arr[r] = arr[l]-arr[r]; arr[l] = arr[l]-arr[r]; l++; } return arr; } // function to check if the given array is increasing or not function increasing(arr){ // getting the size of array var len = arr.length // traversing over the array for(var i = 1; i < len; i++){ if(arr[i] < arr[i-1]){ return false; } } return true; } // function to check if the given array is decreasing or not function decreasing(arr){ // getting the size of array var len = arr.length // traversing over the array for(var i = 1; i < len; i++){ if(arr[i] > arr[i-1]){ return false; } } return true; } // function to check whether the given array can become // increasing or decreasing after certain rotations function check(arr){ var k = arr.length while(k--){ if(increasing(arr) || decreasing(arr)){ return true; } arr = rotate(arr); } return false; } // defining the arr's var arr1 = [3, 4, 5, 6, 1, 2] var arr2 = [5, 1, 6, 2, 5, 3] console.log("The given array is: "); console.log(arr1) if(check(arr1) == true){ console.log("Yes, after some rotations given array can be transformed into an increasing or decreasing array"); } else{ console.log("No, after some rotations given array cannot be transformed into an increasing or decreasing array"); } console.log("The given array is: "); console.log(arr2) if(check(arr2) == true){ console.log("Yes, after some rotations given array can be transformed into an increasing or decreasing array"); } else{ console.log("No, after some rotations given array cannot be transformed into an increasing or decreasing array"); }
Output
The given array is: [ 3, 4, 5, 6, 1, 2 ] Yes, after some rotations given array can be transformed into an increasing or decreasing array The given array is: [ 5, 1, 6, 2, 5, 3 ] No, after some rotations given array cannot be transformed into an increasing or decreasing array
The time complexity of the above code is O(N*N) and the space complexity is O(1).
Efficient Approach
In the previous array we have checked for each rotation whether the array is increasing or decreasing, in this approach we will partially check for the increasing or decreasing array.
Example
// function to check if the given array is increasing or not function increasing(arr){ // getting the size of array var len = arr.length // traversing over the array var i = 0; for(var i = 1; i < len; i++){ if(arr[i] < arr[i-1]){ break; } } if(i == len) return true; i++; for(; i< len; i++){ if(arr[i] < arr[i-1]){ return false; } } return arr[len-1] <= arr[0]; } // function to check if the given array is decreasing or not function decreasing(arr){ // getting the size of array var len = arr.length // traversing over the array var i = 0; for(var i = 1; i < len; i++){ if(arr[i] > arr[i-1]){ break; } } if(i == len) return true; i++; for(; i< len; i++){ if(arr[i] > arr[i-1]){ return false; } } return arr[len-1] >= arr[0]; } // function to check whether the given array can become increasing or decreasing after certain rotations function check(arr){ if(increasing(arr) || decreasing(arr)){ return true; } else{ return false; } } // defining the arr's var arr1 = [3, 4, 7, 6, 1, 2] var arr2 = [5, 1, 6, 2, 5, 3] console.log("The given array is: "); console.log(arr1) if(check(arr1) == true){ console.log("Yes, after some rotations given array can be transformed into an increasing or decreasing array"); } else{ console.log("No, after some rotations given array cannot be transformed into an increasing or decreasing array"); } console.log("The given array is: "); console.log(arr2) if(check(arr2) == true){ console.log("Yes, after some rotations given array can be transformed into an increasing or decreasing array"); } else{ console.log("No, after some rotations given array cannot be transformed into an increasing or decreasing array"); }
Output
The given array is: [ 3, 4, 7, 6, 1, 2 ] No, after some rotations given array cannot be transformed into an increasing or decreasing array The given array is: [ 5, 1, 6, 2, 5, 3 ] No, after some rotations given array cannot be transformed into an increasing or decreasing array
The time complexity of the above code is O(N) and the space complexity is O(1).
Conclusion
In this tutorial, we have implemented a JavaScript program for check if it is possible to make the given array increasing or decreasing by rotating it. We have implemented two approaches with O(N*N) and O(N) time complexity and both with O(1) space complexity.