# Implementing K-means clustering of Diabetes dataset with SciPy library

ScipyScientific ComputingOpen Source

The Pima Indian Diabetes dataset, which we will be using here, is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. Based on the following diagnostic factors, this dataset can be used to place a patient in ether diabetic cluster or non-diabetic cluster −

• Pregnancies

• Glucose

• Blood Pressure

• Skin Thickness

• Insulin

• BMI

• Diabetes Pedigree Function

• Age

You can get this dataset in .CSV format from Kaggle website.

## Example

The example below will use SciPy library to create two clusters namely diabetic and non-diabetic from the Pima Indian diabetes dataset.

#importing the required Python libraries:
import matplotlib.pyplot as plt
import numpy as np
from scipy.cluster.vq import whiten, kmeans, vq

# Printing the data after excluding the outcome column
dataset = dataset[:, 0:8]
print("Data :\n", dataset, "\n")

#Normalizing the data:
dataset = whiten(dataset)

# generating code book by computing K-Means with K = 2 (2 clusters i.e., diabetic, and non-diabetic clusters)
centroids, mean_dist = kmeans(dataset, 2)
print("Code book :\n", centroids, "\n")

clusters, dist = vq(dataset, centroids)
print("Clusters :\n", clusters, "\n")

# forming cluster of non-diabetic patients
non_diabetic = list(clusters).count(0)
# forming cluster of diabetic patients
diabetic = list(clusters).count(1)
#Plotting the pie chart having clusters
x_axis = []
x_axis.append(diabetic)
x_axis.append(non_diabetic)
colors = ['red', 'green']
print("Total number of diabetic patients : " + str(x_axis[0]) + "\nTotal number non-diabetic patients : " + str(x_axis[1]))
y = ['diabetic', 'non-diabetic']
plt.pie(x_axis, labels=y, colors=colors, shadow='false')
plt.show()

## Output

Data :
[[ 6. 148. 72. ... 33.6 0.627 50. ]
[ 1. 85. 66. ... 26.6 0.351 31. ]
[ 8. 183. 64. ... 23.3 0.672 32. ]
...
[ 5. 121. 72. ... 26.2 0.245 30. ]
[ 1. 126. 60. ... 30.1 0.349 47. ]
[ 1. 93. 70. ... 30.4 0.315 23. ]]

Code book :
[[2.08198148 4.17698255 3.96280983 1.04984582 0.56968574 4.13266474
1.40143319 3.86427413]
[0.6114727 3.56175537 3.35245694 1.42268776 0.76239717 4.01974705
1.43848683 2.24399453]]

Clusters :
[0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
0
0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1
1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1
0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 0
0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0
1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1
0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0
1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0
1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1
1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1
0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1
0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0
1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0
1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1
0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1]

Total number of diabetic patients : 492
Total number non-diabetic patients : 276

Published on 23-Nov-2021 13:07:39