# How to estimate the gradient of a function in one or more dimensions in PyTorch?

PyTorchServer Side ProgrammingProgramming

To estimate the gradient of a function, we can apply the torch.gradient() function. This function estimates the gradient using the second-order accurate central differences method. We can estimate the gradient in one or more dimensions. The function of which the gradient is to be estimated may be defined on a real or complex domain. In the process of estimating the gradients, the gradient is estimated by estimating each partial derivative of the function independently.

### Syntax

torch.gradient(values)

where the parameter values is the tensor that represents the values of the function.

### Steps

We could use the following steps to estimate the gradient of a function −

• Import the required library. In all the following examples, the required Python library is torch. Make sure you have already installed it.

import torch
• Define the function f and the points x.

x = torch.tensor([-1., -2., 3., 4.])
def f(x):
return x**3
• Compute the values of the above defined function f for the given point x.

values = f(x)
• Now estimate the gradient of the function using torch.gradient(values). Here values is a tensor computed above as the values of the function f for the given point x.

grad = torch.gradient(values)
• Print the tensor containing estimated gradients.

print("Estimated Gradients:\n", grad)

Now let's take a couple of examples to demonstrate how to estimate the gradient of a function.

## Example 1

# Python program to estimate the gradient of
# f(x)=x^3 at points [-2, -1, 2, 4]

# Import the required library
import torch

# define the points
x = torch.tensor([-1., -2., 3., 4.])
print("Points\n", x)

# define the function
def f(x):
return x**3
# values of the function
values = f(x)
print("Function Value:\n", values)

# estimate the gradients of the above function

# print the gradients above estimated
print("Estimated Gradients:\n", grad)

## Output

Points
tensor([-1., -2., 3., 4.])
Function Value:
tensor([-1., -8., 27., 64.])
(tensor([-7., 14., 36., 37.]),)

In the above example, we have estimated the gradient of the function f(x)=x^3 at points [-2, -1, 2, 4].

## Example 2

# Python 3 program to estimates the gradient of f(x)=x^2+3
# Import the required library
import torch

# define the points
x = torch.randn(2,2)
print("Points\n", x)

# define the function
def f(x):
return x**2+3

# values of the function
values = f(x)
print("Function Value:\n", values)

# estimate the gradients of the above function

# print the gradients above estimated

# estimate the gradients of the above function in dim 0

# print the gradients above estimated

# estimate the gradients of the above function in dim 1

# print the gradients above estimated
print("Estimated Gradients in dim 1:\n", grad_dim1)

## Output

Points
tensor([[-1.7004, 1.5121],
[-0.5974, -1.2117]])
Function Value:
tensor([[5.8914, 5.2864],
[3.3569, 4.4682]])
[ 1.1113, 1.1113]]),)