- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to compute elementwise logical AND, OR and NOT of given input tensors in PyTorch?
To compute elementwise logical AND of given input tensors we apply torch.logical_and(). It takes two input tensors and computes the logical AND element wise. The zeros in the tensors are treated as False and non-zeros as True. The input tensors may be of any dimension.
The torch.logical_or() function computes elementwise logical OR of the given input tensors. It also takes two input tensors and outputs a tensor with True or False. As same in logical AND zeros are treated as False and non-zeros are treated as True.The input tensors may be of any dimension.
To compute the elementwise NOT of a given input tensor we apply torch.logical_not() metod. This method takes a single input tensor and returns a tensor with a logical NOT of each element. Same as above, zeros are False and non-zeros as True.
Syntax
torch.logical_and(input1, input2) torch.logical_or(input1, input2) torch.logical_not(input)
Steps
Import the required library. In all the following examples, the required Python library is torch. Make sure you have already installed it.
import torch
Define torch tensors and print them.
input1 = torch.tensor([4, -2, 3, 0], dtype=torch.int8) input2 = torch.tensor([0, 1, -7, 2], dtype=torch.int8)
Compute logical AND, OR or NOT using above defined syntax.
output = torch.logical_and(input1, input2)
Print the computed tensor.
print("Logical AND:
", output)
Now let's take a couple of examples to demonstrate how to compute elementwise Logical AND, OR and NOT.
Example 1
In this Python program, we compute the element-wise logical AND.
# Python 3 program to compute element-wise # logical AND of the given input tensors # Import the required library import torch # define two tensors input1 = torch.tensor([4, -2, 3, 0], dtype=torch.int8) input2 = torch.tensor([0, 1, -7, 2], dtype=torch.int8) # display the above defined tensors print("Input Tensor 1:
", input1) print("Input Tensor 2:
", input2) # compute the logical AND of input1 and input2 output = torch.logical_and(input1, input2) # print above computed logical AND tensor print("Logical AND:
", output) print(".................................") # define two tensors input1 = torch.tensor([True, True, False, False]) input2 = torch.tensor([False, True, False, True]) # display the above defined tensors print("Input Tensor 1:
", input1) print("Input Tensor 2:
", input2) # compute the logical AND of input1 and input2 output = torch.logical_and(input1, input2) # print above computed Logical AND tensor print("Logical AND:
", output)
Output
Input Tensor 1: tensor([ 4, -2, 3, 0], dtype=torch.int8) Input Tensor 2: tensor([ 0, 1, -7, 2], dtype=torch.int8) Logical AND: tensor([False, True, True, False]) ................................. Input Tensor 1: tensor([ True, True, False, False]) Input Tensor 2: tensor([False, True, False, True]) Logical AND: tensor([False, True, False, False])
Example 2
In this program, we compute the element-wise logical OR.
# Python 3 program to compute element-wise # logical OR of the given input tensors # Import the required library import torch # define two tensors input1 = torch.tensor([4, -2, 3, 0], dtype=torch.int8) input2 = torch.tensor([0, 1, -7, 0], dtype=torch.int8) # display the above defined tensors print("Input Tensor 1:
", input1) print("Input Tensor 2:
", input2) # compute the logical OR of input1 and input2 output = torch.logical_or(input1, input2) # print above computed logical OR tensor print("Logical OR:
", output) print(".................................") # define two tensors input1 = torch.tensor([True, True, False, False]) input2 = torch.tensor([False, True, False, True]) # display the above defined tensors print("Input Tensor 1:
", input1) print("Input Tensor 2:
", input2) # compute the logical OR of input1 and input2 output = torch.logical_or(input1, input2) # print above computed Logical OR tensor print("Logical OR:
", output)
Output
Input Tensor 1: tensor([ 4, -2, 3, 0], dtype=torch.int8) Input Tensor 2: tensor([ 0, 1, -7, 0], dtype=torch.int8) Logical OR: tensor([ True, True, True, False]) ................................. Input Tensor 1: tensor([ True, True, False, False]) Input Tensor 2: tensor([False, True, False, True]) Logical OR: tensor([ True, True, False, True])
Example 3
In this program, we compute the element-wise logical NOT.
# Python program to compute logical NOT of a given input tensor # Import the required library import torch # define input tensors input1 = torch.tensor([11, -21, 0], dtype=torch.int8) # display the above defined tensors print("Input Tensor 1:
", input1) # compute the logical NOT output1 = torch.logical_not(input1) # print above computed logical NOT tensor print("Logical NOT:
", output1) # define input tensors input2 = torch.tensor([False, True]) # display the above defined tensors print("Input Tensor 2:
", input2) # compute the logical NOT output2 = torch.logical_not(input2) # print above computed logical NOT tensor print("Logical NOT:
", output2)
Output
Input Tensor 1: tensor([ 11, -21, 0], dtype=torch.int8) Logical NOT: tensor([False, False, True]) Input Tensor 2: tensor([False, True]) Logical NOT: tensor([ True, False])
- Related Articles
- How to compute bitwise AND, OR and NOT of given input tensors in PyTorch?
- PyTorch – How to compute element-wise logical XOR of tensors?
- How to compute the cross entropy loss between input and target tensors in PyTorch?
- How to compute the Cosine Similarity between two tensors in PyTorch?
- How to compute the element-wise angle of the given input tensor in PyTorch?
- How to join tensors in PyTorch?
- How to compare two tensors in PyTorch?
- PyTorch – How to compute element-wise entropy of an input tensor?
- How to create tensors with gradients in PyTorch?
- How to compute the Jacobian of a given function in PyTorch?
- How to compute the Hessian of a given scalar function in PyTorch?
- How to perform element-wise addition on tensors in PyTorch?
- How to perform element-wise subtraction on tensors in PyTorch?
- How to perform element-wise multiplication on tensors in PyTorch?
- How to perform element-wise division on tensors in PyTorch?
