- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Get the current shape of the Masked Array in Numpy
To get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy. The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it.
As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array using the numpy.array() method −
arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
Get the dimensions of the Array −
print("Array Dimensions...
",arr.ndim)
Get the total bytes consumed −
print("Array nbytes...
",arr.nbytes)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
Get the itemsize of the Masked Array −
print("
Our Masked Array itemsize...
", maskArr.itemsize)
Get the dimensions of the Masked Array −
print("
Our Masked Array Dimensions...
",maskArr.ndim)
Get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy −
print("
Our Masked Array Shape...
",maskArr.shape)
Example
import numpy as np import numpy.ma as ma arr = np.array([[35, 85], [67, 33]]) print("Array...
", arr) print("
Array type...
", arr.dtype) print("
Array itemsize...
", arr.itemsize) # Get the dimensions of the Array print("Array Dimensions...
",arr.ndim) # Get the total bytes consumed print("Array nbytes...
",arr.nbytes) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the itemsize of the Masked Array print("
Our Masked Array itemsize...
", maskArr.itemsize) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # To get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy print("
Our Masked Array Shape...
",maskArr.shape)
Output
Array... [[35 85] [67 33]] Array type... int64 Array itemsize... 8 Array Dimensions... 2 Array nbytes... 32 Our Masked Array [[35 85] [67 --]] Our Masked Array type... int64 Our Masked Array itemsize... 8 Our Masked Array Dimensions... 2 Our Masked Array Shape... (2, 2)
- Related Articles
- Get the itemsize of the masked array in Numpy
- Get the Masked Array Dimensions in Numpy
- Get the datatype of a masked array in NumPy
- Get the fill value of the masked array in Numpy
- Return an empty masked array of the given shape where all the data are masked in Numpy
- Get the number of elements of the Masked Array in Numpy
- Get the Imaginary part from the masked array in Numpy
- Return an empty masked array of the given shape and dtype where all the data are masked in Numpy
- Get the information about the memory layout of the masked array in Numpy
- Count the non-masked elements of the masked array in Numpy
- Return a masked array containing the same data but with a new shape in Numpy
- Return the transpose of the masked array in NumPy
- Return the length of the masked array in Numpy
- Swap the bytes of the masked array data in Numpy
- Return the average of the masked array elements in Numpy
