# Get the current shape of the Masked Array in Numpy

NumpyServer Side ProgrammingProgramming

#### Python Data Science basics with Numpy, Pandas and Matplotlib

Most Popular

63 Lectures 6 hours

#### Data Analysis using NumPy and Pandas

19 Lectures 8 hours

#### Numpy with Python

Most Popular

12 Lectures 3 hours

To get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy. The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-place by assigning a tuple of array dimensions to it.

As with numpy.reshape, one of the new shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping an array in-place will fail if a copy is required.

## Steps

At first, import the required library −

import numpy as np
import numpy.ma as ma

Create an array using the numpy.array() method −

arr = np.array([[35, 85], [67, 33]])
print("Array...\n", arr)
print("\nArray type...\n", arr.dtype)

Get the dimensions of the Array −

print("Array Dimensions...\n",arr.ndim)


Get the total bytes consumed −

print("Array nbytes...\n",arr.nbytes)

Create a masked array and mask some of them as invalid −

maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1]])
print("\nOur Masked Array type...\n", maskArr.dtype)

Get the itemsize of the Masked Array −

print("\nOur Masked Array itemsize...\n", maskArr.itemsize)


Get the dimensions of the Masked Array −

print("\nOur Masked Array Dimensions...\n",maskArr.ndim)

Get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy −

print("\nOur Masked Array Shape...\n",maskArr.shape)


## Example

import numpy as np
import numpy.ma as ma
arr = np.array([[35, 85], [67, 33]])
print("Array...\n", arr)
print("\nArray type...\n", arr.dtype)
print("\nArray itemsize...\n", arr.itemsize)

# Get the dimensions of the Array
print("Array Dimensions...\n",arr.ndim)

# Get the total bytes consumed
print("Array nbytes...\n",arr.nbytes)

# Create a masked array and mask some of them as invalid

# Get the itemsize of the Masked Array

# Get the dimensions of the Masked Array

# To get the shape of the Masked Array, use the ma.MaskedArray.shape attribute in Numpy
print("\nOur Masked Array Shape...\n",maskArr.shape)

## Output

Array...
[[35 85]
[67 33]]

Array type...
int64

Array itemsize...
8
Array Dimensions...
2
Array nbytes...
32

[[35 85]
[67 --]]

Our Masked Array type...
int64

Our Masked Array itemsize...
8

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(2, 2)