- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find x, y, z that satisfy 2/n = 1/x + 1/y + 1/z in C++
In this problem, we are given integer values n. Our task is to find x, y, z that satisfy 2/nx + 1/y + 1/z.
Let's take an example to understand the problem,
Input : n = 4 Output : 4, 5, 20
Solution Approach
A simple solution to the problem is by finding the solution using the value of n.
If n = 1, no solution for the equation.
If n > 1, the solution to the equation is x = n, y = n+1, z = n(n+1).
The solution is $2/n\:=\:1/n\:+1\:(n+1)\:+\:1/(n^*(n\:+\:1))$
Example
Program to illustrate the working of our solution
#include <iostream> using namespace std; void findSolution(int a, int b, int n){ for (int i = 0; i * a <= n; i++) { if ((n - (i * a)) % b == 0) { cout<<i<<" and "<<(n - (i * a)) / b; return; } } cout<<"No solution"; } int main(){ int a = 2, b = 3, n = 7; cout<<"The value of x and y for the equation 'ax + by = n' is "; findSolution(a, b, n); return 0; }
Output
The value of x and y for the equation 'ax + by = n' is 2 and 1
- Related Articles
- Verify that ( x^{3}+y^{3}+z^{3}-3 x y z=frac{1}{2}(x+y+z)left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}right] )
- If ( 2^{x}=3^{y}=12^{z} ), show that ( frac{1}{z}=frac{1}{y}+frac{2}{x} ).
- If ( 2^{x}=3^{y}=6^{-z} ), show that ( frac{1}{x}+frac{1}{y}+frac{1}{z}=0 ).
- Show that:( left(frac{a^{x+1}}{a^{y+1}}right)^{x+y}left(frac{a^{y+2}}{a^{z+2}}right)^{y+z}left(frac{a^{z+3}}{a^{x+3}}right)^{z+x}=1 )
- Verify: $xtimes(ytimes z)=(xtimes y)times z$, where $x=frac{1}{2}, y=frac{1}{3}$ and $z=frac{1}{4}$.
- If ( x=a^{m+n}, y=a^{n+1} ) and ( z=a^{l+m} ), prove that ( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} )
- If $x=1, y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- Find the product of $(-3 x y z)(frac{4}{9} x^{2} z)(-frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Subtract $3 x y+5 y z-7 z x$ from $5 x y-2 y z-2 z x+10 x y z$.
- 1. Factorize the expression ( 3 x y - 2 + 3 y - 2 x )A) ( (x+1),(3 y-2) )B) ( (x+1),(3 y+2) )C) ( (x-1),(3 y-2) )D) ( (x-1),(3 y+2) )2. Factorize the expression ( mathrm{xy}-mathrm{x}-mathrm{y}+1 )A) ( (x-1),(y+1) )B) ( (x+1),(y-1) )C) ( (x-1),(y-1) )D) ( (x+1),(y+1) )
- Verify the property ( x times(y+z)=(x times y)+(x times z) ) for the given values of ( x, y ) and ( z ).( x=frac{-5}{2}, y=frac{1}{2} ) and ( z=-frac{10}{7} )>
- Find the following product.$frac{1}{2} x y times frac{2}{3} x^{2} y z^{2}$
- Expand each of the following, using suitable identities:(i) ( (x+2 y+4 z)^{2} )(ii) ( (2 x-y+z)^{2} )(iii) ( (-2 x+3 y+2 z)^{2} )(iv) ( (3 a-7 b-c)^{2} )(v) ( (-2 x+5 y-3 z)^{2} )(vi) ( left[frac{1}{4} a-frac{1}{2} b+1right]^{2} )
- If ( 3^{x}=5^{y}=(75)^{z} ), show that ( z=frac{x y}{2 x+y} ).
- Factorise:(i) ( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z )(ii) ( 2 x^{2}+y^{2}+8 z^{2}-2 sqrt{2} x y+4 sqrt{2} y z-8 x z )

Advertisements